To solve this task we have to make a proportion, but firstly we have to set up all the main points : so, the distance is s=r(B), that has its <span>r=radius,B=angle in rad
velocity v=ds/dt= w(r)
Do not forget about </span> w = angular speed in rad/s and

Now we can go to proportion




SOLVING FOR A :



or something about <span>10 mph --- SOLVING FOR B.
</span>I'm sure it helps!
Amount of work done is zero and so power = 0 watts.
<u>Explanation:</u>
Power is the rate at which work is done, or W divided by delta t. Since the barbell is not moving, the weightlifter is not doing work on the barbell.Therefore, if the work done is zero, then the power is also zero.It may seem unusual that the data given in question is versatile i.e. A weightlifter exerts an upward force on a 1000-N barbell and holds it at a height of 1 meter for 2 seconds. But, still the answer is zero watts , this was a tricky question although conceptual basis of question was good! Power is dependent on amount of work done which is further related to displacement and here the net displacement is zero ! Hence, amount of work done is zero and so power = 0 watts.
We could use the change of pressure to calculate for the height climbed by the mountain hiker. The change of pressure is given by
p = rho * g * h, where p is the change of pressure, rho is the air density, g is the acceleration due to gravity, and h is the height.
Using the conversion 1 mbar = 100 Pa,
(930 - 780)(100) = (1.20)(9.80)h
15000 = 1.20*9.80*h
h = 1.28 km
Answer:
μ = 0.6
Explanation:
given,
speed of car = 29.7 m/s
Radius of curve = 50 m
θ = 30.0°
minimum static friction = ?
now,
writing all the forces acting along y-direction
N cos θ - f sinθ = mg
N cos θ -μN sinθ = mg

now, writing the forces acting along x- direction
N sin θ + f cos θ = F_{net}
N cos θ + μN sinθ = F_{net}

taking cos θ from nominator and denominator




now, inserting all the given values

μ = 0.6
Answer:
The wavelength in miles is <u>0.1165 miles</u>.
Explanation:
Given:
Wavelength of the radio wave is 187.37 m.
Now, the wavelength is given in meters.
We need to convert the wavelength from meters to miles.
In order to convert meters to miles, we have to use their conversion factor.
We know that,
1 meter = 
Therefore, the conversion factor is given as:

So, the wavelength in miles is given as:

Hence, the wavelength in miles is 0.1165 miles.