Answer:
The volume of water evaporated is 199mL
Explanation:
Concentration is calculated with the following formula

where n is the number of moles of solute and V is the volume of the solution (in this case is the same as the solvent volume) in liters.
So we isolate the variable n to know the amount of moles, using the volume given in liters


Now, we isolate the variable V to know the new volume with the new concentration given.

Finally, the volume of water evaporated is the difference between initial and final volume.

Answer:
u=36.8m/s
Explanation:
because of the acceleration is a constant acceleration we can use one of the "SUVAT" equations
u^2=v^2-2ā*s. where:
u^2 stands for intial velocity
v^2 stands for final velocity
since the cougar skidded to a complete stop the final velocity is zero.
u^2=v^2-2ā*s
u^2=(0)^2 -2(-2.87 m/s^2)*236 m
u^2=0+5.74m/s^2* 236m
u^2=1354.64m^2/s^2
u=√1354.64m^2/s^2
u=36.8m/s (approximate value)
when ever the acceleration is constant you can use one of the following equation to find the required value.
1. v = u + at. (no s)
2. s= 1/2(u+v)t. (no ā)
3. s=ut + 1/2at^2. ( no v)
4. v^2=u^2 + 2āS. (no t). 5. s= vt - 1/2at^2. (no u)
<span><span>Department of Highway Safety and Motor Vehicles OR</span></span>
<span><span /><span><span>Division of Highway Safety and Motor Vehicles </span></span></span>
<u>Answer:</u>
The velocity of the truck is 34 m/s.
<u>Explanation:</u>
The momentum (p) of an object is the product of its mass (m) and its velocity (v) which can be written as:
<em>p = mv</em>
Here in this problem, we are given a truck which has a momentum of 40120 kg and a mass of 1180 kg and we are to find its velocity.
So substituting the given values in the above formula to find the velocity of the truck.
Truck's velocity =
= 34 m/s.