1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
juin [17]
3 years ago
10

In an "atom smasher," two particles collide head on at relativistic speeds. If the velocity of the first particle is 0.741c to t

he left, and the velocity of the second particle is 0.543c to the right (both as measured in the lab rest frame), how fast are the particles moving with respect to each other?
Physics
1 answer:
USPshnik [31]3 years ago
5 0

Answer:

W_x = 0.9156\ c

Explanation:

given,

velocity of particle 1 = 0.741 c to left

velocity of second particle = 0.543 c to right

relative velocity between the particle = ?

for the relative velocity calculation we have formula

W_x = \dfrac{|u_x - v_x|}{1-\dfrac{u_xv_x}{c^2}}

u_x = 0.543 c

v_x = - 0.741 c

W_x = \dfrac{0.543 c - (-0.741 c)}{1-\dfrac{(0.543 c)(-0.741 c)}{c^2}}

W_x = \dfrac{0.543 c +0.741 c)}{1+\dfrac{(0.543)(0.741)c^2}{c^2}}

W_x = \dfrac{1.284c}{1+0.402363}

W_x = 0.9156\ c

Relative velocity of the particle is W_x = 0.9156\ c

You might be interested in
What question did use of a telescope by hubble answer A) Is earth the center of the universe B) Is the sun the center of the uni
cestrela7 [59]

Answer: C

Explanation:

3 0
3 years ago
Read 2 more answers
Which of the following is true about teeth in mammals? a. Only large mammals have teeth. b. All teeth in mammals look the same a
katovenus [111]
<span>c. Mammal teeth do different jobs and are different sizes and shapes</span>
4 0
3 years ago
In a thunder and lightning storm there is a rule of thumb that many people follow. After seeing the lightning, count seconds to
lubasha [3.4K]

Answer:

2.837% less than actual value.

Explanation:

Based on given information let's calculate our value.

S = Vxt = 331m/s x 5s = 1655m, that is the total distance that sound would travel in 5 seconds.

1mile = 1609.34meters.

percentage error is.

\frac{actual-calculated}{actual} *100 = \frac{1609.34-1655}{1609.34} *100 = -2.83%

negative indicates less than actual value.

3 0
3 years ago
Sirius, the brightest star in the sky, is 2.6 parsecs (8.6 light-years) from Earth, giving it a parallax of 0.379 arcseconds. An
Vikentia [17]

Answer: Sirius, the brightest star in the sky, is 2.6 parsecs (8.6 light-years) from Earth, giving it a parallax of 0.379 arcseconds. Another bright star, Regulus, has a parallax of 0.042 arcseconds. Then, the distance in parsecs will be,23.46.

Explanation: To find the answer, we have to know more about the relation between the distance in parsecs and the parallax.

<h3>What is the relation between the distance in parsecs and the parallax?</h3>
  • Let's consider a star in the sky, is d parsec distance from the earth, and which has some parallax of P amount.
  • Then, the equation connecting parallax and the distance in parsec can be written as,

                                     d=\frac{1}{P}

  • We can say that,

                                    dP=constant.\\thus,\\d_1P_1=d_2P_2

<h3>How to solve the problem?</h3>
  • We have given that,

                                     d_1=2.6 parsecs.\\P_1=0.379arcseconds.\\P_2=0.042 arcseconds.\\d_2=?

  • Thus, we can find the distance in parsecs as,

                                     d_2=\frac{d_1P_1}{P_2} =23.46 parsecs

Thus, we can conclude that, the distance in parsecs will be, 23.46.

Learn more about the relation connecting distance in parsecs and the parallax here: brainly.com/question/28044776

#SPJ4

6 0
2 years ago
A soccer ball is kicked and left
Vedmedyk [2.9K]

Answer:

Explanation:

Considering that this is parabolic motion, we know that the time the ball is in the air begins the instant it leaves the ground, reaches up to its max height, and then begins falling until it reaches the ground. Duh, right? Some important things happen during this trip. There are a few things we need to know in order to even begin the problem. Parabolic motion has x and y coordinates because it is 2-dimmensional; the acceleration in the x dimension is not the same as the acceleration in the y dimension; the velocity of an object at its max height is always 0; the time it takes to reach its max height (where the max height is half the distance the object travels) is half the time it takes to make the whole trip. Yikes. That's a lot to know and much to remember! Don't you just LOVE physics!?

For a. the hang time is the time the ball was in the air. Some of that stuff we talked about above is pertinent to solving this problem. We know that the velocity of the ball is 0 at its max height, and we also know that if we find the time it takes to reach its max height, we can double that number to find how long it was in the air for the whole trip. Use the one-dimensional equation

v=v_0+at to find out how long it took to reach the max height. Even though we don't yet know the max height, we DO know that the velocity at that point is 0. BUT before we do that, since we are working in the y-dimension only, it would behoove us (benefit us) to find the velocity particular to this dimension. We are going to answer c. first, then backtrack.

c. wants the initial vertical velocity. That is found in the magnitude of the "blanket" or generic velocity times the sin of the angle, namely:

V_y=25sin(45) so

V_y= 18 m/s Now we can use that as the initial upwards velocity in part a:

v=v_0+at and filling in:

0 = 18 + (-9.8)t and

-18 = -9.8t so

t = 1.8 seconds. But remember, this is only half the time it was in the air. The whole trip, then, takes 2(1.8) which is

t = 3.6 seconds

That's a and c. Now for b:

b. asks for the x component of the velocity:

V_x=Vcos\theta which works out to be the same as the vertical velocity, since the sin and cos of 45 degrees is the same:

V_x=25cos45 and

V_x= 18 m/s

Onto d:

d. wants the max height. Remember, it took 1.8 seconds to get to the max height, so using yet another one-dimensional equation:

Δx = v₀t + \frac{1}{2}at^2 where Δx is the displacement, v₀ is the initial upwards velocity, a is the pull of gravity, and t is the time it takes to reach that max height (Δx, our unknown). Filling in:

Δx = 18(1.8)+\frac{1}{2}(-9.8)(1.8)^2 and if you do the rounding correctly, you'll end up with this:

Δx = 32 - 16 so

the max height, Δx, is 16 meters.

e. wants the range. That translates to the distance the ball traveled. This is found in a glorified version of d = rt, where d is displacement, r is velocity, and t is...well, time (that doesn't change):

Δx = vt so

Δx = 18(3.6) remember that the ball was in the air for a total of 3.6 seconds, so

Δx = 65 meters.

Phew!!!!! That's a lot! I suggest you learn your physics or this will make you insane by the end of the course!

6 0
3 years ago
Other questions:
  • A 75 kg pilot flies a plane in a loop. At the top of the loop, where the plane is completely
    8·1 answer
  • Fitness can be achieved only through
    11·2 answers
  • A vehicle travels from a 30m marker to a 100m marker. What is the change in distance?
    11·2 answers
  • How do you read a topographic map?
    9·2 answers
  • How many seconds will it take for a satellite to travel 450,000 m at a rate of 120 m/s?
    14·1 answer
  • The nearest star to the Earth is the red dwarf star Proxima Centauri, at a distance of 4.218 light-years. Convert this distance
    9·1 answer
  • Carbon monoxide (CO) _____.
    7·2 answers
  • can you suggest improvement that can be made towards the design of siphon so that the transfer of liquid is much higher.​
    13·1 answer
  • 2) A car travels 5 miles north, and then 10 miles south. What is the person's DISTANCE and
    8·1 answer
  • a steel ball bearing is released from a height hhh and rebounds after hitting a steel plate to a height hhh. what is true about
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!