Answer : Noble Gases do not readily form compounds because they are chemically stable with 8 valence electrons.
Explanation :
Noble gases are the chemical elements that are present in group 18 in the periodic table.
The elements are helium, neon, argon, krypton, xenon and radon.
They are chemically most stable except helium due to having the maximum number of 8 valence electrons can hold their outermost shell that means they have a complete octet.
They are rarely reacts with other elements to form compounds by gaining or losing electrons since they are already chemically stable.
Hence, the noble Gases do not readily form compounds because they are chemically stable with 8 valence electrons.
Answer:
Explanation:
Velocity of a wave is describe as
velocity =Frequency × Wavelength
Mathematically
v = fλ
Hence, Frequency, F = v / λ
Wavelength λ = v/f
So, if the frequency is kept constant, wavelength of the wave becomes directly proportional to velocity of the wave.
And this implies that, as the speed double, the wavelength is double.
Complete Question
A Ferris wheel on a California pier is 27 m high and rotates once every 32 seconds in the counterclockwise direction. When the wheel starts turning, you are at the very top.
What is your angular position 75 seconds after the wheel starts turning, measured counterclockwise from the top? Express your answer as an angle between 0∘ and 360∘. Express your answer in degrees.
Answer:

Explanation:
From the question we are told that:
Height 
Period 
Time 
Generally the equation for angular velocity is mathematically given by



Therefore



Therefore


Answer:
Their efforts would be expressed in units of Joules per second
Explanation:
The unit of their efforts can be derived from the formula of power which is given by the product of mass, acceleration and distance (the product is energy with unit joules) divided by time taken to complete the task (unit is seconds)
Therefore, the unit of their efforts would be joules per second
Answer:
17. NADH has a molar extinction coefficient of 6200 M2 cm at 340 nm. Calculate the molar concentration of NADH required to obtain an absorbance of 0.1 at 340 nm in a 1-cm path length cuvette. 18. A sample with a path length of 1 cm absorbs 99.0% of the incident light at a wavelength of 274 nm, measured with respect to an appropriate solvent blank. Tyrosine is known to be the only chromophore present in the sample that has significant absorption at 274 nm. Calculate the molar concentration of tyrosine in the sample.
Explanation: