Answer:
C. Lithium is most easily oxidized of the metals listed on the activity series and therefore it will most easily give electrons to metal cations
Explanation:
"Lithium" is a type of alkali metal that has a "single valence electron." Since it is a reactive element, it easily gives up an electron when it is combined with other elements. Such giving up of electron is meant to create compounds or bonds.
Among the common metals listed, "lithium" is the most easily oxidized. This means that it donates its electrons immediately. Such combination makes it exist as a<em> "cation"</em> or <em>"positively-charged."</em>
So, this explains the answer.
Explanation:
It'd be better to use cyclohexane. The possible explanation is that the freezing temperature will change by 20.1 degrees for each mole of substance added to 1 kg of cyclohexane, although the same amount added to naphthalene will change its freezing point just by 6.94 degrees.
It is so much easier to identify a larger change more adequately than a smaller one. You would actually not have a 1 molal solution in operation, so the variations in freezing points would be even smaller than the ones already described.
Agents that antagonize the effects of acetylcholine are called anticholinergic.
<span>Anticholinergic blocks this neurotransmitter acetylcholine within the nervous system, by deactivating nerve impulses as a result of the binding of this neurotransmitter so that it cannot reach its receptor in nerve cells.</span>