Answer:
A. mass X to moles X to moles Y to liters Y
Explanation:
Remember: moles are the great converter. They're basically just a made-up concept meant to facilitate conversions!
Starting with mass X, you must then convert to moles X.
Once you have moles X, convert moles Y. Think of a chemical equation: the mole ratios are the coefficients!
Once you have moles Y, all you have to do is convert to liters Y. You can do this with the molarity equation M = mol/L, or if it's a gas at STP you know the conversion!
Answer:
When a gas is heated, the molecules move faster, bump into each other, and spread apart. Because the molecules are spread apart, they take up more space. They are less dense.
Answer:
The answer is C.
Explanation:
Mass is converted to the energy binding a nucleus together.
Answer is: the average atomic mass 217.606 amu.
Ar₁= 203.973 amu; the average atomic mass of isotope.
Ar₂ = 205.9745 amu.
Ar₃ = 206.9745 amu.
Ar₄ = 207.9766 amu.
ω₁ = 1.40% = 0.014; mass percentage of isotope.
ω₂ = 24.10% = 0.241.
ω₃ = 22.10% = 0.221.
ω₄ = 57.40% = 0.574.
Ar = Ar₁ · ω₁+ Ar₂ · ω₂ + Ar₃ · ω₃ + Ar₄ · ω₄.
Ar = 203.973 amu · 0.014 + 205.9745 amu · 0.241 + 206.9745 amu · 0.221 + 207.9766 amu · 0.574.
Ar = 2.855 amu + 49.632 amu + 45.741 amu + 119.378 amu.
Ar = 217.606 amu.
But abundance of isotopes is greater than 100%.
It should be lead, with the fourth isotope weighs 207.9766 amu and an abundance of 52.40.
Answer:
76.1 amu
Explanation:
Let us recall that isomers refer to two different compounds with the same molecular formula but different atom to atom connectivity and different chemical properties. When two compounds are isomers, we can essentially represent them with exactly the same molecular formula.
Now propane-1,2-diol and propane-1,3-diol are both represented by the molecular formula C3H8O2 since they are isomers of each other. When two compounds have the same molecular formula, they must essentially have the same molecular mass. Hence the molecular mass of propane-1,3-diol is also 76.1 amu.