1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
solniwko [45]
3 years ago
7

Consider a voltage v = Vdc + vac where Vdc = a constant and the average value of vac = 0. Apply the integral definition of RMS t

o prove the formula RMS =√ [Vdc 2 +(RMS of vac) 2 ]. Hint: v2 = [(Vdc) 2 + 2 *vac* Vdc +(vac) 2 ] and the average value of vac* Vdc = 0.
Engineering
1 answer:
Anna11 [10]3 years ago
7 0

Answer:

Proof is as follows

Proof:

Given that , V = V_{ac} + V_{dc}

<u>for any function f with period T, RMS is given by</u>

<u />RMS = \sqrt{\frac{1}{T}\int\limits^T_0 {[f(t)]^{2} } \, dt  }<u />

In our case, function is V = V_{ac} + V_{dc}

RMS = \sqrt{\frac{1}{T}\int\limits^T_0 {[V_{ac} + V_{dc}]^{2} } \, dt  }

Now open the square term as follows

RMS = \sqrt{\frac{1}{T}\int\limits^T_0 {[V_{ac}^{2} + V_{dc}^{2} + 2V_{dc}V_{ac}] } \, dt  }

Rearranging  terms

RMS = \sqrt{\frac{1}{T}\int\limits^T_0 {V_{dc}^{2}  } \, dt  + \frac{1}{T}\int\limits^T_0 {V_{ac}^{2}  } \, dt  + \frac{1}{T}\int\limits^T_0 {2V_{dc}V_{ac}  } \, dt  }

You can see that

  • second term is square of RMS value of Vac
  • Third terms is average of VdcVac and given is that                      average of  V_{ac}V_{dc} = 0

so

RMS = \sqrt{\frac{1}{T}TV_{dc}^{2}   + [RMS~~ of~~ V_{ac}]^2 }

RMS = \sqrt{V_{dc}^{2}   + [RMS~~ of~~ V_{ac}]^2 }

So it has been proved that given expression for root mean square (RMS) is valid

You might be interested in
If 1 uF capacitor is fully charged with 120 V across it, how much energy is stored in it? (a) 7.2 kJ (b) 7.2 mJ (c) 0.12 mJ (d)
jeyben [28]

Answer:

(b) 7.2 mJ

Explanation:

ENERGY STORED IN CAPACITOR: the energy is stored in capacitor in electric field

which can be calculated by expressions

E=\frac{1}{2} c v{^2}

=\frac{1}{2} 10^{-6}120^{2}

=7200×10^{-6} J

= 7.2×10^{-3} J

=7.2 mJ

4 0
2 years ago
the AADT for a section of suburban freeway is 150000 veh/day. Assuming this is an urban radial facility, what range of direction
igomit [66]

Answer:

design hour volumes will be 4000 to 6000

Explanation:

given data

AADT  = 150000 veh/day

solution

we get here design hour volumes that is express as

design hour volumes  = AADT × k × D    ..............1

here k is factor and its  range is 8 to 12 % for urban

and D is directional distribution i.e traffic equal divided by the direction

so here design hour volumes will be 4000 to 6000

7 0
3 years ago
For a steel alloy it has been determined that a carburizing heat treatment of 11.3 h duration will raise the carbon concentratio
diamong [38]

This question is incomplete, the complete question is;

For a steel alloy it has been determined that a carburizing heat treatment of 11.3 h duration at Temperature T1 will raise the carbon concentration to 0.44 wt% at a point 1.8 mm from the surface. A separate experiment is performed at T2 that doubles the diffusion coefficient for carbon in steel.

Estimate the time necessary to achieve the same concentration at a 4.9 mm position for an identical steel and at the same carburizing temperature T2.

Answer:

the required time to achieve the same concentration at a 4.9 is 83.733 hrs

Explanation:

Given the data in the question;

treatment time t₁ = 11.3 hours

Carbon concentration = 0.444 wt%

thickness at surface x₁ = 1.8 mm = 0.0018 m

thickness at identical steel x₂ = 4.9 mm = 0.0049 m

Now, Using Fick's second law inform of diffusion

x^2 / Dt = constant

where D is constant

then

x^2 / t = constant

x^2_1 / t₁ = x^2_2 / t₂

x^2_1 t₂ = t₁x^2_2

t₂ = t₁x^2_2 / x^2_1

t₂ = (x^2_2 / x^2_1)t₁

t₂ = ( x_2 / x_1 )^2 × t₁

so we substitute

t₂ = ( 0.0049  / 0.0018  )^2 × 11.3 hrs

t₂ = 7.41 × 11.3 hrs

t₂ = 83.733 hrs

Therefore, the required time to achieve the same concentration at a 4.9 is 83.733 hrs

8 0
2 years ago
Select the correct answer. Which existing technology did engineers use to enhance the speed of propeller-driven airplanes
Musya8 [376]

metallurgy:

Explanation:

7 0
2 years ago
A(n) ____________________ measures the resistance to current flow in a circuit.
yulyashka [42]

Answer: OHMMETER & MEGOHMMETER:

Explanation: The ohmmeter measures circuit resistance; the megohmmeter measures the high resistance of insulation. A meter used to measure electric current. It is connected as part of a circuit.

6 0
2 years ago
Other questions:
  • The cables of a power line are copper-coated steel wire. The overall diameter of the wire is 5/8 in. The steel core has a diamet
    8·1 answer
  • CNG is a readily available alternative to
    5·1 answer
  • Remember from Lab 3C that Mad Libs are activities that have a person provide various words, which are then used to complete a sh
    11·1 answer
  • You are considering building a residential wind power system to produce 6,000 kWh of electricity each year. The installed cost o
    15·1 answer
  • What are the basic parts of a radio system
    15·1 answer
  • Explain why the following acts lead to hazardous safety conditions when working with electrical equipmentA) Wearing metal ring o
    11·1 answer
  • What is name for grandmother in German?
    14·1 answer
  • Tech A says that a mechanical pressure regulator exhausts excess fluid back to the transmission pan. Tech B says that if the tra
    9·1 answer
  • What the minimum wire size for a general residential application on a 20 A circuit
    7·1 answer
  • Question is written in following attached screenshot.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!