Answer:
no
Explanation:
it's not a dead load because when load is put on the pillars it's not fully straining it's been slowly getting to be heavier in that period of time before it falls
Answer:
LAOD = 6669.86 N
Explanation:
Given data:
width
thickness 
crack length 2c = 0.5 mm at centre of specimen

stress intensity factor = k will be


we know that

[c =0.5/2 = 2.5*10^{-4}]
K = 0.1724 Mpa m^{1/2} for 1000 load
if
then load will be




LAOD = 6669.86 N
Answer:
vapor fraction = 0.4 and 0.08
Explanation:
At reasonably high temperatures, a mixture will exist in the form of a sub cooled liquid. Between these extremes, the mixture exists in a two phrase region where it is a vapor liquid equilibrium. From a vapor-liquid phase diagram, a mixture of 40% A, 39% B, and 21% C separates to give the vapor compositions of 0.4 and 0.08.
Answer:
1200KJ
Explanation:
The heat dissipated in the rotor while coming down from its running speed to zero, is equal to three times its running kinetic energy.
P (rotor-loss) = 3 x K.E
P = 3 x 300 = 900 KJ
After coming to zero, the motor again goes back to running speed of 1175 rpm but in opposite direction. The KE in this case would be;
KE = 300 KJ
Since it is in opposite direction, it will also add up to rotor loss
P ( rotor loss ) = 900 + 300 = 1200 KJ
The impact behavior of plastic materials is strongly dependent upon the temperature. At high temperatures, materials are more ductile and have high impact toughness. At low temperatures, some plastics that would be ductile at room temperature become brittle.