Answer:
Explanation:
Volume of silver cube = 2.42³ = 14.17 cm³
mass of silver cube = volume x density
= 14.17 x 10.49 = 148.64 gm
Volume of gold cube = 2.75³ = 20.8 cm³
mass of gold cube = 20.8 x 19.3 = 401.44 gm
specific heat of silver and gold are .24 and .129 J /g°C
mass of 112 mL water = 112 g
Heat absorbed = heat lost = mass x specific heat x temperature fall or rise
Heat lost by metals
= 148.64 x .24 x ( 85.4 -T) + 401.44 x .129 x ( 85.4 - T )
= (35.67 + 51.78 ) x ( 85.4 - T )
87.45 x ( 85.4 - T )
= 7468.23 - 87.45 T
Heat gained by water
= 112 x 1 x ( T - 20.5 )
= 112 T - 2296
Heat lost = heat gained
7468.23 - 87.45 T = 112 T - 2296
199.45 T = 9764.23
T = 48.95° C
Answer:
( c ) sunlight.
Explanation:
the leaves are closer to the sunlight they require.
0.300 M IKI represents the
concentration which is in molarity of a potassium iodide solution. This means
that for every liter of solution there are 0.300 moles of potassium iodide. Knowing
that molarity is a ratio of solute to solution.
By using a conversion factor:
100 ml x (1L / 1000 mL) x (0.300
mol Kl / 1 L) x (166.0g / 1 mol Kl) = 4.98 g
Therefore, in the first
conversion by simply converting the unit of volume to liter, Molarity is in L
where the volume is in liters. The next step is converted in moles from volume
by using molarity as a conversion factor which is similar to how density can be
used to convert between volume and mass. After converting to moles it is simply
used as molar mass of Kl which is obtained from periodic table to convert from
mole to grams.
In order to get the grams of IKI
to create a 100 mL solution of 0.600 M IKI, use the same formula as above:
100 ml x (1L / 1000 mL) x (0.600
mol Kl / 1 L) x (166.0g / 1 mol Kl) = 9.96 g