At -25 °C, methanol, whose boiling point is 64.7 °C and its melting point is -97.6 °C, is in the liquid state.
The melting point is the temperature at which a substance passes from solid to liquid. Below the melting point, a substance is in the solid state. Above the melting point, a substance is in the liquid or gas state.
The boiling point is the temperature at which a substance passes from liquid to gas. Below the boiling point, a substance is solid or liquid. Above the boiling point, a substance is in the gas state.
At -25 °C, methanol is above the melting point (-97.6 °C) and below the boiling point (64.7 °C). Thus, it is in the liquid state.
At -25 °C, methanol, whose boiling point is 64.7 °C and its melting point is -97.6 °C, is in the liquid state.
You can learn more about the melting and boiling points here: brainly.com/question/5753603?referrer=searchResults
When it is acted upon by an outside force
Answer:
Yes.
Explanation:
Zn2+ is the zinc ion in aqueous solution.
Zinc is a transition metal.
These metals are in the middle of the periodic table and have similar properties.
Answer: The total energy, in kilojoules, that is needed to turn a 46 g block of ice at -25 degrees C into water vapor at 100 degrees C is 11.787 kJ.
Explanation:
Given: Mass = 46 g
Initial temperature = 
Final temperature = 
Specific heat capacity of ice = 2.05 
Formula used to calculate the energy is as follows.

where,
q = heat energy
m = mass
C = specific heat capacity
= initial temperature
= final temperature
Substitute the values into above formula as follows.

Thus, we can conclude that the total energy, in kilojoules, that is needed to turn a 46 g block of ice at -25 degrees C into water vapor at 100 degrees C is 11.787 kJ.
The molecular formula of methylpropan-1-ol is C4H10O, so the complete combustion equation is: C4H10O + 6O2 --> 4CO2 + 5H2O. This mean to completely combust 1.0mol of methylpropan-1-ol, 6 mol of O2 is required. Molar mass of O2 is 32 g/mol, so 32g/mol x 6mol = 192 g of O2 is required. At room temperature and pressure, the density of O2 is 1.3315 g/L (this can be obtained by density of gas = P/RT). So the volume of O2 = mass/density = 192g/1.3315(g/L) = 144 L = 144 dm3. The answer is B.