Answer:
7
Step-by-step explanation:
yah
<h3>
Answer: C) 3</h3>
The rule we'll use is a^b*a^c = a^(b+c). So we add the exponents.
That means 5^n*5^3 = 5^(n+3)
So 5^n*5^3 = 5^6 turns into 5^(n+3) = 5^6
The bases are equal to 5, so the exponents be equal to one another.
n+3 = 6
n+3-3 = 6-3
n = 3
So 5^3*5^3 = 5^(3+3) = 5^6.
Calculate the lengths of the sides of the triangle:
The triangle has three different sides, so it's a scalene triangle.
Now if c is the longest side of the triangle, and a and b are the shorter sides, then:
- if , the triangle is right
- if , the triangle is acute
- if , the triangle is obtuse
The longest side is 5.
The square of the longest side is equal to the sum of the squares of the shorter sides, so it's a right triangle.
The triangle is a right scalene triangle.
Answer:
R = 
Step-by-step explanation:
IR = V ( isolate R by dividing both sides by I )
R = 
Answer:
14.7 quarts
Step-by-step explanation:
Use the given equivalence figures to write a proportion. Solve the proportion for the unknown value.
__
quarts/liters = x/14 = 1/0.95 . . . . . the conversion is given as 1 qt = 0.95 L
Multiply by 14 to find x.
x = 14(1/0.95) ≈ 14.7
There are about 14.7 quarts in 14 liters.
_____
<em>Additional comment</em>
You are given a value in liters (14 liters) and asked for the equivalent in quarts. That means you want to change the units from liters to quarts. To do that, you can multiply the given value (14 liters) by a conversion factor that has quarts in the numerator and liters in the denominator. That is what the fraction 1/0.95 is in the above. You will note that units of liters cancel in this equation.

This rule, "use a conversion factor that divides by the units you don't want and multiplies by the units you do want" applies to any units conversion problem. The conversion factor you use should <em>always</em> have <em>equal quantities</em> in the numerator and denominator. (Here, the equal quantities are 1 quart and 0.95 liters.)
You will notice that we treat units just like any variable. They can be multiplied, divided, cancelled, raised to a power. Only terms with like units can be added or subtracted.