Answer:
56.9 mmoles of acetate are required in this buffer
Explanation:
To solve this, we can think in the Henderson Hasselbach equation:
pH = pKa + log ([CH₃COO⁻] / [CH₃COOH])
To make the buffer we know:
CH₃COOH + H₂O ⇄ CH₃COO⁻ + H₃O⁺ Ka
We know that Ka from acetic acid is: 1.8×10⁻⁵
pKa = - log Ka
pKa = 4.74
We replace data:
5.5 = 4.74 + log ([acetate] / 10 mmol)
5.5 - 4.74 = log ([acetate] / 10 mmol)
0.755 = log ([acetate] / 10 mmol)
10⁰'⁷⁵⁵ = ([acetate] / 10 mmol)
5.69 = ([acetate] / 10 mmol)
5.69 . 10 = [acetate] → 56.9 mmoles
Answer:
<em><u>Over 96 percent is saline. Of total freshwater, over 68 percent is locked up in ice and glaciers. Another 30 percent of freshwater is in the ground.</u></em>
Other systems in the body might respond with cramps or overheating, which might eventually kill you, if not taken care of in time. Hope this helps!
Answer:
19.8m/s
Explanation:
Given parameters:
Mass of the ball = 10kg
Height of the rail = 20m
Unknown:
Velocity at the bottom of the rail = ?
Solution:
The velocity at the bottom of the rail is its final velocity.
Using the appropriate motion equation, we can find this parameter;
V² = U² + 2gH
V is the final velocity
U is the initial velocity
g is the acceleration due to gravity
H is the height
the ball was rolled from rest, U = 0
V² = O² + 2 x 9.8 x 20
V = 19.8m/s