<u>Answer:</u>
Law used: Combined Gas Law
<u>Explanation:</u>
We are given the following problem:
Carbon dioxide is in a steel tank at 20°C, 10 liters and 1 atm. What is the pressure on the gas when the tank is heated to 100°C?
To solve this, the most appropriate law that can be used it Combined Gas Law, which is the result of combining the Boyle's law, Charles' law, and Gay-Lussac's law together.
I would say all if no statements are available
Ppm = mass of solute mg / mass of solvent kg
0.008 * 1000 = 8.0 mg ( solute )
1000 / 1000 = 1.0 kg (solvent )
ppm = 8 / 1
= 8.0 ppm
hope this helps!
Answer:
pOH = 5.961
Explanation:
To find the pH of a weak base we can use Henderson-Hasselbalch equation for weak bases:
pOH = pKb + log [(CH₃)₃NHCl] / [(CH₃)₃N]
<em>Where pKb is -log Kb = 4.187 and [] could be taken as moles of each specie.</em>
<em />
<em>Moles (CH₃)₃NHCl:</em>
0.0441L * (0.15mol/L) = 6.615x10⁻³moles
<em>Moles (CH₃)₃N:</em>
0.0233L * (0.16mol/L) = 3.728x10⁻³moles
And pOH is:
pOH = pKb + log [(CH₃)₃NHCl] / [(CH₃)₃N]
pOH = 4.187 + log [6.615x10⁻³moles] / [3.728x10⁻³moles]
<h3>pOH = 5.961</h3>
<em />
Answer:
11.9 moles Cl₂
Explanation:
To find the number of moles, you need to use the Ideal Gas Law. The equation looks like this:
PV = nRT
In this equation,
-----> P = pressure (atm)
-----> V = volume (L)
-----> n = moles
-----> R = constant (0.0821 L*atm/mol*K)
-----> T = temperature (K)
Before you can plug the given values into the equation, you first need to convert Celsius to Kelvin.
P = 33.3 atm R = 0.0821 L*atm/mol*K
V = 11.5 L T = 120. °C + 273.15 = 393.15 K
n = ? moles
PV = nRT
(33.3 atm)(11.5 L) = n(0.0821 L*atm/mol*K)(393.15 K)
382.95 = n(0.0821 L*atm/mol*K)(393.15 K)
382.95 = (32.2776)n
11.9 = n