Answer:
no matter is destroyed or created, it merely changes form. In terms of atoms and bonds, there will be the same amount of atoms at the beginning of an experiment as the amount of atoms at the end of experiment. All that will have happened, is that during the reaction, bonds will have been broken and formed making new compounds. However, the amount of atoms remains exactly the same because matter can not be created or destroyed
Hope this helps!
<span>To find the mass of 3.00 moles of magnesium chloride (MgCl2), first record the atomic mass of magnesium (Mg) and chloride (Cl), which are both listed on the periodic table as follows:
Mg=24 g/mole
Cl=38 g/mole
Now, double the Cl mass since there are 2 Cl moles in MgCl2 and then add it to the Mg mass like so:
(38 g/mole*2 moles)+24 g/mole=100 g/mole
Finally, to calculate the mass of 3.00 moles of MgCl2, convert the combined atomic mass to grams as follows:
3.00 moles * 100 g/mole = 300 g</span>
Answer:
See below
Step-by-step explanation:
- Hydrogen either reacts with or is formed by reactions with many other elements, so chemists could use it directly to determine their relative masses.
- Hydrogen has the smallest atomic mass, so it was convenient to give H a relative atomic mass of 1 and assign those of other elements as multiples of this number.
The O = 16 scale became the standard in 1903 and carbon-12 was chosen in 1961.
Hello there!
An Atom would be considered to be the smallest unit that would make up matter. If were to ever see a picture of an atom, they would consists of a proton, neutron, electron, and a nucleus. And all this would be called a Atom.
Your answer: Atom
You would want to make sure that you have controlled the variables properly, and if you determine that you did then you would repeat the experiment to be sure of the results.