1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DerKrebs [107]
3 years ago
13

In 2005 astronomers announced the discovery of a large black hole in the galaxy Markarian 766 having clumps of matter orbiting a

round once every 27 hours and moving at 30,000 km/s.A. How far are these clumps from the center of the black hole?B. What is the mass of this black hole, assuming circular orbits? Express your answer in kilograms and as a multiple of our sun's mass.C. What is the radius of its event horizon?
Physics
1 answer:
IRISSAK [1]3 years ago
8 0

A. 4.64\cdot 10^{11}m

The orbital speed of the clumps of matter around the black hole is equal to the ratio between the circumference of the orbit and the period of revolution:

v=\frac{2\pi r}{T}

where we have:

v=30,000 km/s = 3\cdot 10^7 m/s is the orbital speed

r is the orbital radius

T=27 h \cdot 3600 =97,200 s is the orbital period

Solving for r, we find the distance of the clumps of matter from the centre of the black hole:

r=\frac{vT}{2\pi}=\frac{(3\cdot 10^7 m/s)(97200 s)}{2\pi}=4.64\cdot 10^{11}m

B. 6.26\cdot 10^{36}kg, 3.13\cdot 10^6 M_s

The gravitational force between the black hole and the clumps of matter provides the centripetal force that keeps the matter in circular motion:

m\frac{v^2}{r}=\frac{GMm}{r^2}

where

m is the mass of the clumps of matter

G is the gravitational constant

M is the mass of the black hole

Solving the formula for M, we find the mass of the black hole:

M=\frac{v^2 r}{G}=\frac{(3\cdot 10^7 m/s)^2(4.64\cdot 10^{11} m)}{6.67\cdot 10^{-11}}=6.26\cdot 10^{36}kg

and considering the value of the solar mass

M_s = 2\cdot 10^{30}kg

the mass of the black hole as a multiple of our sun's mass is

M=\frac{6.26\cdot 10^{36} kg}{2\cdot 10^{30} kg}=3.13\cdot 10^6 M_s

C. 9.28\cdot 10^9 m

The radius of the event horizon is equal to the Schwarzschild radius of the black hole, which is given by

R=\frac{2MG}{c^2}

where M is the mass of the black hole and c is the speed of light.

Substituting numbers into the formula, we find

R=\frac{6.26\cdot 10^{36} kg)(6.67\cdot 10^{-11})}{(3\cdot 10^8 m/s)^2}=9.28\cdot 10^9 m

You might be interested in
(please answer fast)
Scrat [10]

Answer:

Lowest

Explanation:

Law of superposition

5 0
4 years ago
A thermally isolated system is made up of a hot piece of aluminum and a cold piece of copper; the aluminum and the copper are in
blsea [12.9K]

Answer:

b) It is impossible to tell without knowing the masses.

Explanation:

The temperature change of a substance when it receives/gives off a certain amount of heat Q is given by

\Delta T= \frac{Q}{m C_s}

where

Q is the amount of heat

m is the mass of the substance

Cs is the specific heat capacity of the substance

In this case, we have a hot piece of aluminum in contact with a cold piece of copper: the amount of heat given off by the aluminum is equal to the amount of heat absorbed by the copper, so Q is the same for the two substances. However, we see that the temperature change of the two substances depends on two other factors: the mass, m, and the specific heat, Cs. So, since we know only the specific heat of the two substances, but not their mass, we can't tell which object will experience the greater temperature change.

4 0
3 years ago
The velocity of an object is the distance it travels per unit time. Suppose the velocity of a gilding bird is measured to be 52.
Elanso [62]

Answer:

d=7.115s

Explanation:

What problem says can be written mathematically as:

v=\frac{d}{t}

Where:

v=Velocity\\t=Time\\d=Distance

The problem itself it's really simple, we only need to replace the data provided in the previous equation, but first, let's convert the units of the velocity from cm/s to m/s because we have to work with the same units and working in meters is the most apropiate action, because is the base unit of length in the International System of Units:

52\frac{cm}{s} *\frac{1m}{100cm} =0.52\frac{m}{s}

Now, we can replace the data in the equation and find the time it will take the bird to travel 3.7 m:

0.52=\frac{3.7}{t}

Solving for t, multiplying by t both sides, and dividing by 0.52 both sides:

t=\frac{3.7}{0.52} =7.115384615s\approx7.115s

5 0
3 years ago
Two climbers are on a mountain. Simon, of mass m, is sitting on a snow covered slope that makes an angle θ with the horizontal.
elena-14-01-66 [18.8K]

Answer:

Explanation:

It is required that the weight of Joe must prevent Simon from being pulled down . That means he is not slipping down but tends to be towed down . So in equilibrium , force of friction will act in upward direction on Simon.

Let in equilibrium , tension in rope be T

For balancing Joe

T = M g

For balancing Simon

friction + T = mgsinθ

μmgcosθ+T = mgsinθ

μmgcosθ+Mg = mgsinθ

M = (msinθ - μmcosθ)

M = m(sinθ - μcosθ)

5 0
3 years ago
Two spheres having masses M and 2M and radii R and 3R, respectively, are released from rest when the distance between their cent
Andrei [34K]

Answer:

v_2 = \sqrt{\frac{GM}{3R}}

v_1 = 2\sqrt{\frac{GM}{3R}}

Explanation:

As we know by energy conservation that change in gravitational potential energy of the system = change in kinetic energy of the two ball

So here we can say

-\frac{GM(2M)}{12R} + 0 = -\frac{GM(2M)}{4R} + \frac{1}{2}Mv_1^2 + \frac{1}{2}(2M)v_2^2

Also since there is no external force on the system of two masses so here total momentum of the two balls will remains conserved

0 = Mv_1 + 2Mv_2

v_1 = -2v_2

now we have

\frac{GM^2}{2R} - \frac{GM^2}{6R} = \frac{1}{2}M(-2v_2)^2 + \frac{1}{2}(2M)v_2^2

\frac{GM^2}{3R} = Mv_2^2

v_2 = \sqrt{\frac{GM}{3R}}

v_1 = 2\sqrt{\frac{GM}{3R}}

4 0
4 years ago
Other questions:
  • I need to know how long the friend will drive before he meets me and how many miles I will have traveled by the time I meet him,
    7·1 answer
  • the brightest , hottest, and most massive stars are the brilliant blue stars designated as spectral class O. if a class O star w
    14·1 answer
  • Explaining how momentum can cause motion
    5·1 answer
  • Which do waves transfer
    5·1 answer
  • State five effect of heat matter​
    12·1 answer
  • An isometry preserves<br> orientation<br> distance<br> direction
    13·2 answers
  • State 3 uses of belt and chain drive
    13·1 answer
  • ) A satellite of mass m has an orbital period T when it is in a circular orbit of radius R around the earth. If the satellite in
    15·1 answer
  • How do you open a door if its not locked?
    6·1 answer
  • Suppose that two objects attract each other with a gravitational force of 16 units. If the mass of both objects was doubled, and
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!