1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DerKrebs [107]
3 years ago
13

In 2005 astronomers announced the discovery of a large black hole in the galaxy Markarian 766 having clumps of matter orbiting a

round once every 27 hours and moving at 30,000 km/s.A. How far are these clumps from the center of the black hole?B. What is the mass of this black hole, assuming circular orbits? Express your answer in kilograms and as a multiple of our sun's mass.C. What is the radius of its event horizon?
Physics
1 answer:
IRISSAK [1]3 years ago
8 0

A. 4.64\cdot 10^{11}m

The orbital speed of the clumps of matter around the black hole is equal to the ratio between the circumference of the orbit and the period of revolution:

v=\frac{2\pi r}{T}

where we have:

v=30,000 km/s = 3\cdot 10^7 m/s is the orbital speed

r is the orbital radius

T=27 h \cdot 3600 =97,200 s is the orbital period

Solving for r, we find the distance of the clumps of matter from the centre of the black hole:

r=\frac{vT}{2\pi}=\frac{(3\cdot 10^7 m/s)(97200 s)}{2\pi}=4.64\cdot 10^{11}m

B. 6.26\cdot 10^{36}kg, 3.13\cdot 10^6 M_s

The gravitational force between the black hole and the clumps of matter provides the centripetal force that keeps the matter in circular motion:

m\frac{v^2}{r}=\frac{GMm}{r^2}

where

m is the mass of the clumps of matter

G is the gravitational constant

M is the mass of the black hole

Solving the formula for M, we find the mass of the black hole:

M=\frac{v^2 r}{G}=\frac{(3\cdot 10^7 m/s)^2(4.64\cdot 10^{11} m)}{6.67\cdot 10^{-11}}=6.26\cdot 10^{36}kg

and considering the value of the solar mass

M_s = 2\cdot 10^{30}kg

the mass of the black hole as a multiple of our sun's mass is

M=\frac{6.26\cdot 10^{36} kg}{2\cdot 10^{30} kg}=3.13\cdot 10^6 M_s

C. 9.28\cdot 10^9 m

The radius of the event horizon is equal to the Schwarzschild radius of the black hole, which is given by

R=\frac{2MG}{c^2}

where M is the mass of the black hole and c is the speed of light.

Substituting numbers into the formula, we find

R=\frac{6.26\cdot 10^{36} kg)(6.67\cdot 10^{-11})}{(3\cdot 10^8 m/s)^2}=9.28\cdot 10^9 m

You might be interested in
A lab assistant drops a 400.0-g piece of metal at 100.0°C into a 100.0-g aluminum cup containing 500.0 g of water at In a few mi
Nataliya [291]

Answer:

2274 J/kg ∙ K

Explanation:

The complete statement of the question is :

A lab assistant drops a 400.0-g piece of metal at 100.0°C into a 100.0-g aluminum cup containing 500.0 g of water at 15 °C. In a few minutes, she measures the final temperature of the system to be 40.0°C. What is the specific heat of the 400.0-g piece of metal, assuming that no significant heat is exchanged with the surroundings? The specific heat of this aluminum is 900.0 J/kg ∙ K and that of water is 4186 J/kg ∙ K.

m_{m} = mass of metal = 400 g

c_{m} = specific heat of metal = ?

T_{mi} = initial temperature of metal = 100 °C

m_{a} = mass of aluminum cup = 100 g

c_{a} = specific heat of aluminum cup = 900.0 J/kg ∙ K

T_{ai} = initial temperature of aluminum cup = 15 °C

m_{w} = mass of water = 500 g

c_{w} = specific heat of water = 4186 J/kg ∙ K

T_{wi} = initial temperature of water = 15 °C

T = Final equilibrium temperature = 40 °C

Using conservation of energy

heat lost by metal = heat gained by aluminum cup + heat gained by water

m_{m} c_{m} (T_{mi} - T) = m_{a} c_{a} (T - T_{ai}) + m_{w} c_{w} (T - T_{wi} ) \\(400) (100 - 40) c_{m} = (100) (900) (40- 15) + (500) (4186) (40 - 15)\\ c_{m} = 2274 Jkg^{-1}K^{-1}

7 0
3 years ago
A batter hits a pop fly, and the baseball (with a mass of 148 g) reaches an altitude of 265 ft. If we assume that the ball was 3
den301095 [7]

Answer:

The increase in potential energy of the ball is 115.82 J

Explanation:

Conceptual analysis

Potential Energy (U) is the energy of a body located at a certain height (h) above the ground and is calculated as follows:

U = m × g × h

U: Potential Energy in Joules (J)

m: mass in kg

g: acceleration due to gravity in m/s²

h: height in m

Equivalences

1 kg = 1000 g

1 ft = 0.3048 m

1 N = 1 (kg×m)/s²

1 J = N × m

Known data

h_2 = 265ft * \frac{0.3048m}{ft} = 80.77m

h_1 = 3ft * \frac{0.3048m}{ft} = 0.914m

m = 148g*\frac{1kg}{1000g} = 0.148kg

g = 9.8 \frac{m}{s^2}

Problem development

ΔU: Potential energy change

ΔU = U₂ - U₁

U₂ - U₁ = mₓgₓh₂ - mₓgₓh₁

U₂ - U₁ = mₓg(h₂ - h₁)

U_2 - U_1 = 0.148kg * 9.8 \frac{m}{s^2}*(80.77m - 0.914m) = 115.82 N * m = 115.82J

The increase in potential energy of the ball is 115.82 J

5 0
3 years ago
Compared to a blue star in the same local cluster, the surface temperature of a red star is a) greater. b) the same. c) lower. d
Andrew [12]

Hello! My name is Zalgo and I am here to help you out on this concluding day. The answer would be C);lower. The reason it would be lower is because the hottest color of flames would be blue. Considering the way a start emits light is fire, this would be the most logical reason for it.

I hope that this helps! :P

"Stay Brainly and stay proud!" - Zalgo

(By the way, do you mind marking me as Brainliest? I'd greatly appreciate it! Thanks! X3)

3 0
3 years ago
If 20 beats are produced within one second, which of the following frequencies could possibly be held by two sound waves traveli
NeTakaya

Answer:

D. 22 Hz and 42 Hz

Explanation:

  • When two waves with different frequency travelling in the same medium meet each other, they produce an interference pattern called beat.
  • <em><u>The frequency of the beat produced is equivalent to </u></em><em><u>the difference between the individual frequencies of the two waves involved.</u></em>
  • <em><u>Therefore; in this case since the frequency of the beat is 20 Hz, that is from 20 beats per second.</u></em>
  • We need to find a pair from the choices whose frequency difference is 20 Hz.
  • This happens to be choice D. 22 Hz and 42 Hz,  that is 42 Hz - 22 Hz = 20 Hz
8 0
3 years ago
Read 2 more answers
The table and graph below show the distances traveled by two different objects. (3 points)
Aleks04 [339]

Answer:c

Explanation: the speed of object a changes but b travels at constant speed

5 0
3 years ago
Other questions:
  • WILL GIVE BRAINLIEST!
    8·1 answer
  • An automobile spare tire is inflated to a certain pressure. When the tire is placed on a car, the weight of the car causes the p
    12·2 answers
  • Leila is building an aluminum-roofed shed in her backyard to store her garden tools.The flat roof will measure 2.0 x 3.0m in are
    13·1 answer
  • How do you graph motion in physics? How do you graph motion in physics? I've seen problems state that an object is in free fall
    11·1 answer
  • When a diver gets into a tuck position by pulling in her arms and legs, she increases her angular speed. Before she goes into th
    11·1 answer
  • Circle the author's purpose for writing this passage
    8·2 answers
  • A train moving with a velocity of 42.9 km/hour North, increases its speed with a uniform acceleration of 0.250 m/s^2 North until
    10·1 answer
  • Electricity is one kind of​
    12·1 answer
  • A slice of pizza has 500 kilocalories. If we could burn the pizza and use all the heat to warm a 50 liter container of cold wate
    15·1 answer
  • Modern observations have shown that the geometry of the universe is ____.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!