Answer:

Explanation:
The strength of the gravitational field at the surface of a planet is given by
(1)
where
G is the gravitational constant
M is the mass of the planet
R is the radius of the planet
For the Earth:

For the unknown planet,

Substituting into the eq.(1), we find the gravitational acceleration of planet X relative to that of the Earth:

And substituting g = 9.8 m/s^2,

Complete question
A 2700 kg car accelerates from rest under the action of two forces. one is a forward force of 1157 newtons provided by traction between the wheels and the road. the other is a 902 newton resistive force due to various frictional forces. how far must the car travel for its speed to reach 3.6 meters per second? answer in units of meters.
Answer:
The car must travel 68.94 meters.
Explanation:
First, we are going to find the acceleration of the car using Newton's second Law:
(1)
with m the mass , a the acceleration and
the net force forces that is:
(2)
with F the force provided by traction and f the resistive force:
(2) on (1):

solving for a:

Now let's use the Galileo’s kinematic equation
(3)
With Vo te initial velocity that's zero because it started from rest, Vf the final velocity (3.6) and
the time took to achieve that velocity, solving (3) for
:


Answer:
F=ma
here F is force, m is mass and a is accelaration,
According to the question,
F=3*F= 3F
m= 1/3 of m= m/3
a= ?
so the equation becomes,
3F= m/3*a
3F*3= ma
9F=ma
F= ma/9
Therefore accelaration reduces by 1/9.
I am not very sure.
....................................