Answer:
option 1 will be the answer.
Explanation:
hope it helps.
The time elapsed is 9 seconds
Explanation:
The motion of the ball is a uniformly accelerated motion (a motion with constant acceleration), so we can use the following suvat equation:
where
:
v is the final velocity of the ball
u is the initial velocity
a is the acceleration
t is the time elapsed
For the ball in this problem, we have:
u = 3 m/s is the initial velocity
v = 34.5 m/s is the final velocity
is the acceleration
Solving for t, we find the time taken for this change in velocity:

Learn more about acceleration:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly
The correct answer for the question that is being presented above is this one:
Phi = BAsin(theta)
<span>1. Phi(i) = BA </span>
<span>2. Phi(f) = 0 </span>
3. EMF = N(phi(i)-phi(f))/deltat
Here are the follow-up questions:
<span>1. What is the total magnitude Phi_initial of the magnetic flux through the coil before it is rotated? </span>
<span>2. What is the magnitude Phi_final of the total magnetic flux through the coil after it is rotated? </span>
<span>3. What is the magnitude of the average emf induced in the coil?</span>
Field motion ( as opposed to collision motion) which are forces like gravity. And Static motion ( as opposed to kinetic motion)
Static motion is where an object moves on or around another moving object. (Circular motion)
Hope this helped