1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
uranmaximum [27]
3 years ago
7

???whats the answers??

Physics
1 answer:
OverLord2011 [107]3 years ago
8 0

The answers is 30 miles per hour, the driver is speeding the car up,     section-H, 12 minutes, section-D, and 65 miles per hour.

You might be interested in
Calcula el valor de la velocidad de las ondas sonoras en el agua sabiendo que su
dybincka [34]
  1. La velocidad de las ondas sonoras es aproximadamente 1469,694 metros por segundo.
  2. La longitud de onda de las ondas sonoras es 1,470 metros.

1) Inicialmente, debemos determinar la velocidad de las ondas sonoras a través del agua (v), en metros por segundo:

v = \sqrt{\frac{K}{\rho} } (1)

Donde:

  • K - Módulo de compresibilidad, en newtons por metro cuadrado.
  • \rho - Densidad del agua, en kilogramos por metro cúbico.

Si sabemos que \rho = 1\times 10^{3}\,\frac{kg}{m^{3}} y K = 2,16\times 10^{9}\,\frac{N}{m^{2}}, entonces la velocidad de las ondas sonoras es:

v = \sqrt{\frac{2,16\times 10^{9}\,\frac{N}{m^{2}}}{1\times 10^{3}\,\frac{kg}{m^{3}} } }

v\approx 1469,694\,\frac{m}{s}

La velocidad de las ondas sonoras es aproximadamente 1469,694 metros por segundo.

2) Luego, determinamos la longitud de onda (\lambda), en metros, mediante la siguiente fórmula:

\lambda = \frac{v}{f} (2)

Donde f es la frecuencia de las ondas sonoras, en hertz.

Si sabemos que v\approx 1469,694\,\frac{m}{s} y f = 1000\,hz, entonces la longitud de onda de las ondas sonoras es:

\lambda = \frac{1469,694\,\frac{m}{s} }{1000\,hz}

\lambda = 1,470\,m

La longitud de onda de las ondas sonoras es 1,470 metros.

Para aprender más sobre las ondas sonoras, invitamos a ver esta pregunta verificada: brainly.com/question/1070238

6 0
2 years ago
A sled of mass 10 kg slides along the ice. it has an initial speed of 2 m/s but stops because of friction. How much work is done
NeX [460]

Answer: The correct answer is option B.

Explanation:

Mass of the sled = 10 kg

Initial speed of the sled = 2 m/s

Kinetic energy of the sled = \frac{1}{2}mv^2

\frac{1}{2}\times 10 kg\times (2 m/s)^2=20 Joules

Work done by the sled = 20 joules

The work done by the friction will be in opposite direction and equal to the magnitude of the work done of the sled that - 20 J.

Hence, correct answer is option B.

6 0
2 years ago
Read 2 more answers
A 40.0 kg beam is attached to a wall with a hi.nge and its far end is supported by a cable. The angle between the beam and the c
GalinKa [24]

The magnitude of the force that the beam exerts on the hi.nge will be,261.12N.

To find the answer, we need to know about the tension.

<h3>How to find the magnitude of the force that the beam exerts on the hi.nge?</h3>
  • Let's draw the free body diagram of the system using the given data.
  • From the diagram, we have to find the magnitude of the force that the beam exerts on the hi.nge.
  • For that, it is given that the horizontal component of force is equal to the 86.62N, which is same as that of the horizontal component of normal reaction that exerts by the beam on the hi.nge.

                           N_x=86.62N

  • We have to find the vertical component of normal reaction that exerts by the beam on the hi.nge. For this, we have to equate the total force in the vertical direction.

                           N_y=F_V=mg-Tsin59\\

  • To find Ny, we need to find the tension T.
  • For this, we can equate the net horizontal force.

                           F_H=N_x=Tcos59\\\\T=\frac{F_H}{cos59} =\frac{86.62}{0.51}= 169.84N

  • Thus, the vertical component of normal reaction that exerts by the beam on the hi.nge become,

                    N_y= (40*9.8)-(169.8*sin59)=246.4N

  • Thus, the magnitude of the force that the beam exerts on the hi.nge will be,

                 N=\sqrt{N_x^2+N_y^2} =\sqrt{(86.62)^2+(246.4)^2}=261.12N

Thus, we can conclude that, the magnitude of the force that the beam exerts on the hi.nge is 261.12N.

Learn more about the tension here:

brainly.com/question/28106871

#SPJ1

4 0
1 year ago
Read 2 more answers
HELP!!
tresset_1 [31]

Answer:

So do 2400 divided by 70. I got 34.285714 and the numbers behind the decimal are repeating. If you round it you get 34.3

3 0
2 years ago
During heavy rain, a section of a mountainside measuring 2.5 km horizontally, 0.80 km up along the slope, and 2.0 m deep slips i
Crank

Answer:

The mass of the mud is 3040000 kg.

Explanation:

Given that,

length = 2.5 km

Width = 0.80 km

Height = 2.0 m

Length of valley = 0.40 km

Width of valley = 0.40 km

Density = 1900 Kg/m³

Area = 4.0 m²

We need to calculate the mass of the mud

Using formula of density

\rho=\dfrac{m}{V}

m=\rho\times V

Where, V = volume of mud

\rho = density of mud

Put the value into the formula

m=1900\times4.0\times0.40\times10^{3}

m =3040000\ kg

Hence, The mass of the mud is 3040000 kg.

4 0
3 years ago
Other questions:
  • Which of the following describes sound waves
    9·2 answers
  • What is the difference between a distance time graph and a speed time graph?
    9·1 answer
  • Identify two types of simple machines in this compund machine.
    5·2 answers
  • Although we have discussed single-slit diffraction only for a slit, a similar result holds when light bends around a straight, t
    12·1 answer
  • An object moves with velocity v(t)=t^2-8t+7
    9·1 answer
  • 2. What happens when multiple forces act on an object? (Points : 1)
    5·2 answers
  • Assuming that Bernoulli's equation applies, compute the volume of water ΔV that flows across the exit of the pipe in 1.00 s . In
    15·1 answer
  • Imagine a sound wave with a frequency of 1 kHz propagating with a speed of 1500 m/s in water. Determine the phase difference in
    10·1 answer
  • A projectile of mass 2.0 kg is fired in the air at an angle of 40.0 ° to the horizon at a speed of 50.0 m/s. At the highest poin
    5·1 answer
  • What will happen to the Sun after it loses so much mass that its gravity
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!