Kinetic energy and potential energy pair is the quantity in which one will increase then other will decrease
As we know that sum of kinetic energy and potential energy will always remain conserved
So here we will have

so here as we move away from mean position the kinetic energy will decrease while at the same time potential energy will increase.
So the pair of potential energy and kinetic energy will satisfy the above condition
Answer:
m=417.24 kg
Explanation:
Given Data
Initial mass of rocket M = 3600 Kg
Initial velocity of rocket vi = 2900 m/s
velocity of gas vg = 4300 m/s
Θ = 11° angle in degrees
To find
m = mass of gas
Solution
Let m = mass of gas
first to find Initial speed with angle given
So
Vi=vi×tanΘ...............tan angle
Vi= 2900m/s × tan (11°)
Vi=563.7 m/s
Now to find mass
m = (M ×vi ×tanΘ)/( vg + vi tanΘ)
put the values as we have already solve vi ×tanΘ
m = (3600 kg ×563.7m/s)/(4300 m/s + 563.7 m/s)
m=417.24 kg
Answer:
When two objects collide and stick together, what will happen to their speed, assuming momentum is conserved? They will move at the same velocity as whichever object was fastest initially. They will move at the same velocity of whichever object was slowest initially.
Explanation:
Answer:
There are <u>5</u> significant figures.
Explanation:
You must start conting your sig figs until you continue to hit zeros at the end. Those zeroes at the end are disregarded. So 0.0609 is where you get your <em>sig figs</em> from.