It state that the average kinetic energy from a gas particle depends only on the temperature of the gas
Answer:
Gases that are very good at absorbing long wave photons of infrared light
Explanation:
- Green house gases examples are Carbon monoxide, nitric oxide etc.
- These gases absorb long wave photons of infrared light of sun's rays
- They melts the glaciers and increase the sea level .
Answer:
The required diagram is shown in the figure. When an object is placed in front of the convex lens, i.e., between 2F
1
and F
1
, its image is formed beyond 2F
2
on the other side of the lens. The image is real, inverted and enlarged.
solution
Answer:
The value is 
Explanation:
From the question we are told that
The radius of the inner conductor is 
The radius of the outer conductor is 
The potential at the outer conductor is 
Generally the capacitance per length of the capacitor like set up of the two conductors is
![C= \frac{2 * \pi * \epsilon_o }{ ln [\frac{r_2}{r_1} ]}](https://tex.z-dn.net/?f=C%3D%20%5Cfrac%7B2%20%2A%20%5Cpi%20%2A%20%5Cepsilon_o%20%7D%7B%20ln%20%5B%5Cfrac%7Br_2%7D%7Br_1%7D%20%5D%7D)
Here
is the permitivity of free space with value 
=> ![C= \frac{2 * 3.142 * 8.85*10^{-12} }{ ln [\frac{0.003}{0.001} ]}](https://tex.z-dn.net/?f=C%3D%20%5Cfrac%7B2%20%2A%20%203.142%20%20%2A%208.85%2A10%5E%7B-12%7D%20%20%7D%7B%20ln%20%5B%5Cfrac%7B0.003%7D%7B0.001%7D%20%5D%7D)
=> 
Generally given that the potential of the outer conductor with respect to the inner conductor is positive it then mean that the outer conductor is positively charge
Generally the line charge density of the outer conductor is mathematically represented as

=> 
=> 
Generally the surface charge density is mathematically represented as
here 
=> 
=> 