Answer:
Part b would be 4 and c would be 5 and d would be 19
Step-by-step explanation:
So yea do those
Answer:
0.281 = 28.1% probability a given player averaged less than 190.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
A bowling leagues mean score is 197 with a standard deviation of 12.
This means that 
What is the probability a given player averaged less than 190?
This is the p-value of Z when X = 190.



has a p-value of 0.281.
0.281 = 28.1% probability a given player averaged less than 190.
<span>You did not include the equations that you want to assess whether they can be used to solve for the radius (r).
Likely, the equation of the circumference, C = 2*Pi*r is included, if so => r = C / (2*Pi).
If you round Pi to 3.14, the equation may be written r = C / 6.28.</span>
Answer:
Either
(approximately
) or
(approximately
.)
Step-by-step explanation:
Let
denote the first term of this geometric series, and let
denote the common ratio of this geometric series.
The first five terms of this series would be:
First equation:
.
Second equation:
.
Rewrite and simplify the first equation.
.
Therefore, the first equation becomes:
..
Similarly, rewrite and simplify the second equation:
.
Therefore, the second equation becomes:
.
Take the quotient between these two equations:
.
Simplify and solve for
:
.
.
Either
or
.
Assume that
. Substitute back to either of the two original equations to show that
.
Calculate the sum of the first five terms:
.
Similarly, assume that
. Substitute back to either of the two original equations to show that
.
Calculate the sum of the first five terms:
.