We can solve for the acceleration by using a kinematic equation. First we should identify what we know so we can choose the correct equation.
We are given an original velocity of 24 m/s, a final velocity of 0 m/s, and a time of 6 s. We and looking for acceleration (a) in m/s^2.
The following equation has everything we need:

So plug in the known values and solve for a:
0 = 24 + 6a
-24 = 6a
a = -4 m/s^2
Work = (force) x (distance)
Power = (work) / (time)
Knowing force, distance, and time, it looks like
you can calculate both <em>work and power</em>.
But that's not all !
-- <u>Speed</u> = (distance) / (time)
-- <u>Impulse</u> = change in momentum = (force) x (time)
The analogous formula for magnetic fields is the Ampere's law.
To find the answer, we need to know about the Ampere's law of magnetism.
<h3>What's Ampere's law of magnetism?</h3>
Ampere's law states that the close line integral of magnetic field around a current carrying loop is directly proportional to the current enclosed within it.
<h3>What's is the mathematical expression of Ampere's law?</h3>
Mathematically, Ampere's law is
B•dl= μ₀I
Thus, we can conclude that the analogous formula for gauss law is the Ampere's law in magnetism.
Learn more about the Ampere's law here:
brainly.com/question/17070619
#SPJ4
Answer:
the answer is
Explanation:For equilibrium
Weight = Tension
mg=T
∴T=4×3.1π=12.4πN (as can be inferred from the question)
Y=
△l/l
T/A
=
1000
0.031
/20
12.4π/π(
1000
2
)
2
=
4×0.031
12.4×20×1000×(1000)
2
=2×10
12
N/m
2