Let h = distance (m) to the water surface.
Initial velocity, u = 0 (because the stone was dropped).
Use the formula
h = ut + (1/2)gt^2
where g = 9.8 m/s^2 (acc. due to graity)
t = time (s)
h = (1/2)*(9.8)*(3^2) = 44.1 m
I'm assuming you want the first law of thermodynamics.
The First Law of Thermodynamics states that heat is a form of energy and cannot be created or destroyed. It can, however, be transferred from one location to another and can be converted into other forms of energy.
Answer:
use the bowl of water because Earth's magnetic field is relatively weak. Allowing it to float freely on the water, allows the magnetized needle to freely react to Earth's magnetic field, causing it to align North to South. If you watched closely, the same end of the needle should always point to the North
Explanation:
I think the correct answer from the choices listed above is option A. Wave motion is a movement of energy through space or a medium . Some waves are visible light waves, heat waves, sound waves and the like. Hope this answers the question.
Answer:
force for start moving is 7.49 N
force for moving constant velocity 2.25 N
Explanation:
given data
mass = 7.65 kg
kinetic coefficient of friction = 0.030
static coefficient of friction = 0.10
solution
we get here first weight of block of ice that is
weight of block of ice = mass × g
weight of block of ice = 7.65 × 9.8 = 74.97 N
so here Ff = Fa
so for force for start moving is
Fa = weight × static coefficient of friction
Fa = 74.97 × 0.10
Fa = 7.49 N
and
force for moving constant velocity is
Fa = weight × kinetic coefficient of friction
Fa = 74.97 × 0.030
Fa = 2.25 N