Answer:

Explanation:
Let's use the equation that relate the temperatures and volumes of an adiabatic process in a ideal gas.
.
Now, let's use the ideal gas equation to the initial and the final state:

Let's recall that the term nR is a constant. That is why we can match these equations.
We can find a relation between the volumes of the initial and the final state.

Combining this equation with the first equation we have:


Now, we just need to solve this equation for T₂.

Let's assume the initial temperature and pressure as 25 °C = 298 K and 1 atm = 1.01 * 10⁵ Pa, in a normal conditions.
Here,
Finally, T2 will be:

<u>Answer:</u>
<em>Equivalence point and end point are terminologies in pH titrations and they are not the same.
</em>
<u>Explanation:</u>
In a <em>titration the substance</em> added slowly to a solution usually through a pippette is called titrante and the solution to which it is added is called titrand. In acid-base titrations acid is added to base or base is added to acid.the strengths of the <em>acid and base titrated</em> determines the nature of the final solution.
At equivalence point the <em>number of moles of the acid</em> will be equal to the number of moles of the base as given in the equation. The nature of the final solution determines the <em>pH at equivalence point. </em>
<em>A pH less than 7 will be the result if the resultant is acidic and if it is basic the pH will be greater than 7. </em>In a strong base-strong acid and weak base-weak acid titration the pH at the equivalence point will be 7 indicating <em>neutral nature of the solution.
</em>
the answers going to be A
Answer:
Momentum P is 840000kgm/s or 8.4 × 10^6
Explanation:
Data :
Mass = 21000 kg
Velocity = 400 m/s
So momentum is given as
P = mv
P = 21000×400
P = 8400000 kgm/s
P = 8.4 × 10^6