The total momentum of the system is equal to 50 Kgm/s.
<u>Given the following data:</u>
To determine the total momentum of the system:
Mathematically, momentum is given by the formula;

<u>For Football player 1:</u>

Momentum 1 = 160 Kgm/s.
<u>For Football player 2:</u>

Momentum 1 = 210 Kgm/s.
Now, we can calculate the total momentum of the system:

Total momentum = 50 Kgm/s.
<u>Note:</u> We subtracted because the football players were moving in opposite directions.
Read more: brainly.com/question/15517471
Answer:
Explanation:
D = 8.27 m ⇒ R = D / 2 = 8.27 m / 2 = 4.135 m
ω = 0.66 rev/sec = (0.66 rev/sec)*(2π rad/1 rev) = 4.1469 rad/s
We can apply the equation
Ff = W ⇒ μ*N = m*g <em>(I)</em>
then we have
N = Fc = m*ac = m*(ω²*R)
Returning to the equation <em>I</em>
<em />
μ*N = m*g ⇒ μ*m*ω²*R = m*g ⇒ μ = g / (ω²*R)
Finally
μ = (9.81 m/s²) / ((4.1469 rad/s)²*4.135 m) = 0.1379
Answer:
Answer is in the following attachment.
Explanation:
Answer:
835.29 Hz
Explanation:
When moving towards the source of sound, frequency will be given by
f*=f(vd+v)/v
Where f is the freqiency of the source, vd is the driving speed, v is the speed of sound in air, f* is the inkown frequency when moving forward.
Substituting 800 Hz for f, 340 m/s for v and 15 m/s for vd then
f*=800(15+340)/340=835.29411764704 Hz
Rounded off, the frequency is approximately 835.29 Hz
Metals are not brittle so it can’t be the first one or the third one, both metalloids and metals are shiny so it can’t be the second one. Therefore, it would be the last one because both metalloids and metals are shiny and both are solids at room temperature because it is not a high enough melting point.
ANSWER: Both are shiny and are solid at room temperature.