1) 5t^2 (1 + 6t)
2) 4x^3y^5 (5x + 2y)
3) (5r + 6x)(5r - 6x)
4) (x + 10)(x - 10)
5) (x - 3)^2
6) (x -5)(x - 3)
7) 3(16r^3 + 9)
8) 8(c^3 + 8d^3)
9) (2r - 125)(4r^2 + 250r + 15625)
10) (c + 3)(c - 1)
Answer:
Step-by-step explanation:
<u>The absolute value function is:</u>
<u>Step 1. Function is vertically stretched by a factor of 3:</u>
<u>Step 2. Shifted two units left:</u>
<u>Step 3. Shifted 5 units down:</u>
<em>See attached</em>
<em>Steps are </em><em>Black → Blue → Green → Red</em>
Answer:
80% that is what you got is this a test question or no?
Step-by-step explanation:
Answer:
a) 28,662 cm² max error
0,0111 relative error
b) 102,692 cm³ max error
0,004 relative error
Step-by-step explanation:
Length of cicumference is: 90 cm
L = 2*π*r
Applying differentiation on both sides f the equation
dL = 2*π* dr ⇒ dr = 0,5 / 2*π
dr = 1/4π
The equation for the volume of the sphere is
V(s) = 4/3*π*r³ and for the surface area is
S(s) = 4*π*r²
Differentiating
a) dS(s) = 4*2*π*r* dr ⇒ where 2*π*r = L = 90
Then
dS(s) = 4*90 (1/4*π)
dS(s) = 28.662 cm² ( Maximum error since dr = (1/4π) is maximum error
For relative error
DS´(s) = (90/π) / 4*π*r²
DS´(s) = 90 / 4*π*(L/2*π)² ⇒ DS(s) = 2 /180
DS´(s) = 0,0111 cm²
b) V(s) = 4/3*π*r³
Differentiating we get:
DV(s) = 4*π*r² dr
Maximum error
DV(s) = 4*π*r² ( 1/ 4*π*) ⇒ DV(s) = (90)² / 8*π²
DV(s) = 102,692 cm³ max error
Relative error
DV´(v) = (90)² / 8*π²/ 4/3*π*r³
DV´(v) = 1/240
DV´(v) = 0,004
Slope of the line
(3-(-5)) / (-5-(-1))
8 / -4
-2