The net current in the conductors and the value of the line integral

- The resultant remains same 3.2 *10^4 Tm
This is further explained below.
<h3>What is the net current in the conductors?</h3>
Generally,
To put it another way, the total current In flowing across a surface S (contained by C) is proportional to the line integral of the magnetic B-field (in tesla, T).


B)
In conclusion, It is possible for the line integral to go around the loop in either direction (clockwise or counterclockwise), the vector area dS to point in either of the two normal directions and Ienc, which is the net current passing through the surface S, to be positive in either direction—but both directions can be chosen as positive in this example. The right-hand rule solves these ambiguities.
The resultant remains the same at 3.2 *10^4 Tm
Read more about conductors
brainly.com/question/8426444
#SPJ1
Power = work/time = (Force times distance)/time
= (30N *10.0m)/5.00s = 300/5 = 60 Watts
Answer:
you cant caculate this because there is no question
Explanation:
Answer:
D)
Explanation:
The Period-Luminosity relationship tells us that luminosity increases with the period, and of course the more luminosity a star has the more far away they can be seen, so from this we know that:
A) False since lower luminosities can be observed when they are close.
B) False since longer periods means higher luminosities
C) False since lower luminosities can be observed when they are close.
D) True: Variable stars with shorter periods have lower luminosities, so they can only be observed when they are close.