At the top of the mountain, when he tightens the cap onto the bottole, there is some water and some air inside the bottle. Then he brings the bottle down to the base of the mountain.
The pressure on the outside of the bottle is greater than it was when he put the cap on. If anything could get out of the bottlde, it would. But it can't . . . the cap is on too tight. So all the water and all the air has to stay inside, and anything that can get squished into a smaller space has to get squished into a smaller space.
The water is pretty much unsquishable.
Biut the air in there can be <em>COMPRESSED</em>. The air gets squished into a smaller space, and the bottle wrinkles in slightly.
A galvanic cell is formed when two metals are immersed in solu- tions differing in concentration 1 when two different metals are immersed.
<h3>What is galvanic cell?</h3>
- The galvanic cell utilizes the ability to split the flow of electrons in the process of oxidization and reduction, compelling a half-reaction and connecting each with a wire so that a way can be formed for the flow of electrons via such wire.
- A galvanic cell is an electrochemical cell that transforms the chemical energy of a spontaneous redox response into electrical energy. It has an electrical possibility equal to 1.1 V. In galvanic cells, oxidation occurs at the anode and it is a negative plate. Lessening occurs at the cathode and it is a positive plate.
- A galvanic cell is an electrochemical cell that converts the free liveliness of a chemical method into electrical energy. A photogalvanic cell generates species photochemically which react resulting in an electrical current via an external circuit.
To learn more about galvanic cell, refer to:
brainly.com/question/13031093
#SPJ4
The correct answer to this question is false
When you heat a certain substance with a difference of temperature

the heat (energy) you must give to it is

where

is the specific heat of that substance (given in J/(g*Celsius))
In this case

Observation: the specific heat of a substance is given in J/(g*Celsius) or J/(g*Kelvin) because on the temperature scale a
difference of 1 degree Celsius = 1 degree Kelvin