Answer:
111.5 m
Explanation:
Given that You are driving to the grocery store at 14 m/s. You are 115 m from an intersection when the traffic light turns red. Assume that your reaction time is 0.50 s and that your car brakes with constant acceleration.
Use first equation of motion
V = U - at
Since the car is going to rest, V = 0 and a = negative
0 = 14 - a × 0.5
0.5a = 14
a = 14 /0.5
a = 28 m/s^2
Let us use second equation of motion
S = Ut - 1/2at^2
S = 14 × 0.5 - 0.5 × 28 × 0.5^2
S = 7 - 3.5
S = 3.5 m
115 - 3.5 = 111.5
Therefore, you are 111.5 metres from the intersection (in m) when you begin to apply the brakes.
<span>Greek philosophers had a basic approach to studying the world. They like to question the world and incite debates but they never really bothered to gather any real information, just discussions. Due to this, many ideas about matters were put out to be discussed, but they were never resolved.</span>
Answer:
P= 454.11 N
Explanation:
Since P is the only horizontal force acting on the system, it can be defined as the product of the acceleration by the total mass of the system (both cubes).

The friction force between both cubes (F) is defined as the normal force acting on the smaller cube multiplied by the coefficient of static friction. Since both cubes are subject to the same acceleration:

In order for the small cube to not slide down, the friction force must equal the weight of the small cube:

The smallest magnitude that P can have in order to keep the small cube from sliding downward is 454.11 N
When you are on a huge water slide, the force present as you slide is the gravitational force. It is because the gravity enables you to slide down the water slide. The net force is the overall forces of the object, so as you slide the water slide, you may experience the net force once you slide down with the gravity and water sliding you down.
Answer:
The box will be moving at 0.45m/s. The solution to this problem requires the knowledge and application of newtons second law of motion and the knowledge of linear motion. The vertical component of the force Fp acts vertically upwards against the directio of motion. This causes a constant upward force of 23sin45° to act on the box. Fhe frictional force of 13N also acts vertically upwards and so two forces act upwards against rhe force of gravity resulting un a net force of 0.7N acting kn the box. This corresponds to an acceleration of 0.225m/s². So in w.0s after i start to push v = 0.45m/s.
Explanation: