Answer:
In the context of the loop and junction rules for electrical circuits, a junction is where three or more wires are joined.
Explanation:
A point where at least three circuit paths meet i.e wires, is referred to as a junction.
Kirchhoff’s circuit laws are two(2) equations first published by Gustav Kirchhoff in 1845. Fundamentally, they address conservation of energy and charge in the context of electrical circuits. One of the laws known as Kirchoff's Current Law deals with the principle of application of conserved energy in electrical circuits. Kirchoff's Current Law states that the sum of all currents entering a junction must equal the sum of all currents leaving the junction.
This basically means, the algebraic sum of currents in a network of conductors(wires) meeting at a point is equal to zero
Explanation:
It is given that,
Distance between wires, d = 3.5 mm = 0.0035 m
Power of light bulb, P = 100 W
Potential difference, V = 120 V
(a) We need to find the force per unit length each wire of the cord exert on the other. It is given by :

Power, P = V × I

This gives, 


(b) Since, the two wires carry equal currents in opposite directions. So, teh force is repulsive.
(c) This force is negligible.
Hence, this is the required solution.
Answer:
(1) 2 ohms
(2) 12 Volts Across each resistor
(3) I₁ = 3 A, I₂ = 2 A, I₃ = 1 A
Explanation:
From the question,
(1) Equilvalent Resistance (Rt) for parallel connection is
1/Rt =(1/R₁)+ (1/R₂) + (1/R₃)
Where R₁ = 4 ohms, R₂ = 6 ohms, R₃ = 12 ohms
1/Rt = 1/4 +1/6 +1/12
1/Rt = (3+2+1)/12
1/Rt = 6/12
1/Rt = 1/2
Rt = 2 ohms.
(2) Since the resistors are connected in parallel, They will have the same potential difference across them,
Hence the P.d across each resistor = 12 Volts.
(3) For R₁,
I₁ = V/R₁ = 12/4
I₁ = 3 A.
For R₂,
I₂ = V/R₂
I₂ = 12/6
I₂ = 2 A
For R₃,
I₃ = V/R₃
I₃ = 12/12
I₃ = 1 A
Answer:
Electrical power transmission involves the bulk movement of electrical energy from a generating site, such as a power station or power plant, to an electrical substation where voltage is transformed and distributed to consumers or other substations.
Explanation:
:)