Answer:
b) True. the force of air drag on him is equal to his weight.
Explanation:
Let us propose the solution of the problem in order to analyze the given statements.
The problem must be solved with Newton's second law.
When he jumps off the plane
fr - w = ma
Where the friction force has some form of type.
fr = G v + H v²
Let's replace
(G v + H v²) - mg = m dv / dt
We can see that the friction force increases as the speed increases
At the equilibrium point
fr - w = 0
fr = mg
(G v + H v2) = mg
For low speeds the quadratic depended is not important, so we can reduce the equation to
G v = mg
v = mg / G
This is the terminal speed.
Now let's analyze the claims
a) False is g between the friction force constant
b) True.
c) False. It is equal to the weight
d) False. In the terminal speed the acceleration is zero
e) False. The friction force is equal to the weight
Answer:
about 14.7°
Explanation:
The formula for the angle of the first minimum is ...
sin(θ) = λ/a
where θ is the angle relative to the door centerline, λ is the wavelength of the sound, and "a" is the width of the door.
The wavelength of the sound is the speed of sound divided by the frequency:
λ = (340 m/s)/(1300 Hz) ≈ 0.261538 m
Then the angle of interest is ...
θ = arcsin(0.261538/1.03) ≈ 14.7°
At an angle of about 14.7°, someone outside the room will hear no sound.
Answer:
Regeneration means that an organism regrows a lost part, so that the original function is restored.
<span>To begin, the formula for finding frequency when wavelength is known is "f = c / w" when c is the constant velocity (3 * 10^8 m/s). To convert the wavelength into a common form (m/s), it will have to be multiplied by 10^-2. This leaves the equation as "f = 3.0 * 10^8 / (2.4 * 10^-5 * 10^-2), or 2.4 * 10^-7. This gives 1.25 * 10^15 m/s as the frequency.</span>