Answer: The scientist gives up and starts an investigation on a new topic.
Explanation:
The data is altered so that it supports the original hypothesized. The data is then altered so that it supports the original hypothesis.
Answer:
Electric current is defined as the rate of flow of electric charge in a circuit from point one point to another. This is carried by electrically charged particles within the circuit. Current is represented by the symbol I and its unit measured in Amperes. It is therefore related to the voltage and resistance of the circuit. If the current in the circuit reduces, the rate at which the charge and current on the capacitor reduces also proportionally in an exponential manner.
Explanation:
Since a decrease in the flow of current in the circuit is observed, the implication for the rate at which the charge and voltage on the capacitor is also an exponential decrease in the rate of flow with time. This is because the electric current is directly proportional to the electric charge and the time.
Answer:
3141N or 3.1 ×10³N to 2 significant figures. The can experiences this inward force on its outer surface.
Explanation:
The atmospheric pressure acts on the outer surface of the can. In order to calculate this inward force we need to know the total surface area of the can available to the air outside the can. Since the can is a cylinder with a total surface area given by 2πrh + 2πr² =
A = 2πr(r + h)
Where h = height of the can = 12cm
r = radius of the can = 6.5cm/2 = 3.25cm
r = diameter /2
A = 2π×3.25 ×(3.25 + 12) = 311.4cm² = 311.4 ×10-⁴ = 0.031m²
Atmospheric pressure, P = 101325Pa = 101325 N/m²
F = P × A
F = 101325 ×0.031.
F = 3141N. Or 3.1 ×10³ N.
<span>(symbol K)</span><span> Energy that an object possesses because it is in motion. It is the energy given to an object to set it in motion; it depends on the mass (</span>m) of the object and its velocity (v<span>), according to the equation K = 1/2 </span>mv2<span>. On impact, it is converted into other forms of energy such as heat, sound and light.</span>
Answer:
a) S = 1.69 10⁹ W/m², b) P = 5.63 Pa
, c) F = 20.6 10⁻¹² N
Explanation:
a) The intensity defined as the energy per unit area
S = U / A
Area of a circle is
W = 6.2 mw = 6.2 10-3 W
R = 1080 nm = 1080 10⁻⁹ m = 1.080 10⁻⁶ m
A = π R2
A = π (1,080 10⁻⁶)²
A = 3.66 10 -12 m²
S = 6.2 10-3 / 3.66 10-12
S = 1.69 10⁹ W / m²
b) The radiation pressure
P = 1 / c (dU / dt) / A
S = (dU / dt) / A
P = S / c
P = 1.69 10 9 / 3. 108
P = 5.63 Pa
c) the definition of pressure is force over area
P = F / A
F = P A
F = 5.63 3.66 10⁻¹²
F = 20.6 10⁻¹² N
d) for this we use Newton's second law
F = ma
a = F / m