To solve this problem it is necessary to apply the concepts related to the geometry of a cylindrical tank and its respective definition.
The volume of a tank is given by

Where
d = Diameter
h = Height
Considering that there are two stages, let's define the initial and final volume as,


We know as well by definition that

Then we have for the statement that


Replacing the previous data


Solving to get h,

Therefore the change is



Therefore te change in the height of the water in the tank is 0.37mm
Answer:

Explanation:
Acceleration is defined as the change in velocity divided by the time it took to produce such change. The formula then reads:

Where Vf is the final velocity of the object, (in our case 80 m/s)
Vi is the initial velocity of the object (in our case 0 m/s because the object was at rest)
and t is the time it took to change from the Vi to the Vf (in our case 0.05 seconds.
Therefore we have:

Notice that the units of acceleration in the SI system are
(meters divided square seconds)
Correct question:
A solenoid of length 0.35 m and diameter 0.040 m carries a current of 5.0 A through its windings. If the magnetic field in the center of the solenoid is 2.8 x 10⁻² T, what is the number of turns per meter for this solenoid?
Answer:
the number of turns per meter for the solenoid is 4.5 x 10³ turns/m.
Explanation:
Given;
length of solenoid, L= 0.35 m
diameter of the solenoid, d = 0.04 m
current through the solenoid, I = 5.0 A
magnetic field in the center of the solenoid, 2.8 x 10⁻² T
The number of turns per meter for the solenoid is calculated as follows;

Therefore, the number of turns per meter for the solenoid is 4.5 x 10³ turns/m.
Answer:
Magnitude of Vector = 79.3
Explanation:
When a vector is resolved into its rectangular components, it forms two vector components. These components are named as x-component and y-component, they are calculated by the following formulae:
x-component of vector = (Magnitude of Vector)(Cos θ)
y-component of vector = (Magnitude of Vector)(Sin θ)
where,
θ = angle of the vector with x-axis = 27°
Therefore, using the values in the equation of y-component, we get:
36 = (Magnitude of Vector)(Sin 27°)
Magnitude of Vector = 36/Sin 27°
<u>Magnitude of Vector = 79.3</u>
A gas heated to millions of degrees would emit mostly x-rays.