2: It's not just the capillary action, but the pull from transpiration (the evaporation of water from the tree) that is used to pull water up from the roots.
<span>The second question needs context. Strong bonds alone won't cause tension. I don't see how adhesion is different. High vapour pressure could do it, but it's the difference in pressures that'd cause tension (and the resistance of that pressure by the surface). So, a low and high pressure would be needed. Poorly worded question :( </span>
<span>1: "Adhesion is the tendency of certain dissimilar molecules to cling together due to attractive forces." [1] </span>
<span>3: The other three answere would not work. Think of a boat. </span>
<span>3: If you push gas, it will be compressed(get smaller). If you push liquid it will push something else. Thus, liquids are good for transferring force. This is a hydraulic system.</span>
Answer:
The acorn hasn't hit the ground because it only falsl half of the branch distance from the ground
Explanation:
given information:
h =9.8
t =1 s
g = 9.8
the average speed
v = 1/2 gt²
= 1/2 (9.8) (1)²
= 4.8 m/s
the distance in 1s
h = v t
= 4.8 (1)
= 4.8 m
the acorn hasn't hit the ground because it only falsl half of the branch distance from the ground
=
The conservation of momentum states that the total momentum in a system is constant if there is no external force acting on the system. The total momentum in the gun bullet system is 0 so it must stay that way.
The momentum of the bullet is mv = 0.015*500=7.5
The momentum of the gun must be the same to keep the total momentum of the system equal to zero, so we know that p = 7.5 for the gun.
Substituting this in we get:
7.5=3.1x
x=7.5/3.1
x=2.42
So the speed of the gun is 2.4m/s.
Answer:
Reset
Explanation:
Digital methods are the methods that are uses methodological outlook to study societal change and cultural condition of online data. Reset is use to disguise data In digital methods. It is use to set again and conceal data by giving the data a different form. It restores the device to the original manufacture's settings.
Answer:
Time, t = 80 seconds
Explanation:
Given that,
The frequency of the oscillating mass, f = 1.25 Hz
Number of oscillations, n = 100
We need to find the time in which it makes 100 oscillations. We know that the frequency of an object is number of oscillations per unit time. It is given by :



t = 80 seconds
So, it will make 100 oscillations in 80 seconds. Hence, this is the required solution.