It's kinda tough, since we don't know the actual numerical locations of the points, only an approximate picture.
The big ball has 11 times the mass of the small ball, so the small ball is 11 times as far from the barycenter as the big ball is.
If any of the points is marked at the actual barycenter, it can only be point-A .
50/200×100%=25% is answer the formula is usefull energy output divided by total energy provided into 100%
a) The kinetic energy (KE) of an object is expressed as the product of half of the mass (m) of the object and the square of its velocity (v²):

It is given:
v = 8.5 m/s
m = 91 kg
So:

b) We can calculate height by using the formula for potential energy (PE):
PE = m*g*h
In this case, h is eight, and PE is the same as KE:
PE = KE = 3,287.4 J
m = 91 kg
g = 9.81 m/s² - gravitational acceleration
h = ? - height
Now, let's replace those:
3,287.4= 91 * 9.81 * h
⇒ h = 3,287.4/(91*9.81) = 3,287.4/892.7 = 3.7 m
Answer:
p = 1.16 10⁻¹⁴ C m and ΔU = 2.7 10 -11 J
Explanation:
The dipole moment of a dipole is the product of charges by distance
p = 2 a q
With 2a the distance between the charges and the magnitude of the charges
p = 1.7 10⁻⁹ 6.8 10⁻⁶
p = 1.16 10⁻¹⁴ C m
The potential energie dipole is described by the expression
U = - p E cos θ
Where θ is the angle between the dipole and the electric field, the zero value of the potential energy is located for when the dipole is perpendicular to the electric field line
Orientation parallel to the field
θ = 0º
U = 1.16 10⁻¹⁴ 1160 cos 0
U1 = 1.35 10⁻¹¹ J
Antiparallel orientation
θ = 180º
cos 180 = -1
U2 = -1.35 10⁻¹¹ J
The difference in energy between these two configurations is the subtraction of the energies
ΔU = | U1 -U2 |
ΔU = 1.35 10-11 - (-1.35 10-11)
ΔU = 2.7 10 -11 J
The ball accelerates because of gravity.