20*5%= 20* 0.05=1 , and 1 year= 365 days, so 1 *355=$355 in one year I think, but I’m not sure how to use the formula
Answer:
The common ratio is 4
Step-by-step explanation:
We need to divide a term by the previous term to find the common ratio in a geometric sequence:
64 ÷ 16 = 4
256 ÷ 64 = 4
By doing it twice we can confirm that the common ratio is 4
Unlike the previous problem, this one requires application of the Law of Cosines. You want to find angle Q when you know the lengths of all 3 sides of the triangle.
Law of Cosines: a^2 = b^2 + c^2 - 2bc cos A
Applying that here:
40^2 = 32^2 + 64^2 - 2(32)(64)cos Q
Do the math. Solve for cos Q, and then find Q in degrees and Q in radians.
-39, -37, -35, -33, -31, -29. Odd numbers are the same just backwards ;)
When roots of polynomials occur in radical form, they occur as two conjugates.
That is,
The conjugate of (a + √b) is (a - √b) and vice versa.
To show that the given conjugates come from a polynomial, we should create the polynomial from the given factors.
The first factor is x - (a + √b).
The second factor is x - (a - √b).
The polynomial is
f(x) = [x - (a + √b)]*[x - (a - √b)]
= x² - x(a - √b) - x(a + √b) + (a + √b)(a - √b)
= x² - 2ax + x√b - x√b + a² - b
= x² - 2ax + a² - b
This is a quadratic polynomial, as expected.
If you solve the quadratic equation x² - 2ax + a² - b = 0 with the quadratic formula, it should yield the pair of conjugate radical roots.
x = (1/2) [ 2a +/- √(4a² - 4(a² - b)]
= a +/- (1/2)*√(4b)
= a +/- √b
x = a + √b, or x = a - √b, as expected.