The best and most correct answer among the choices provided by your question is the first choice or letter A.
<span>The minimum amount of energy that has to be added to start a reaction is the activation energy.</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
Answer:
r = 0.02 m
Explanation:
from the question we have :
speed = 1 rps = 1x 60 = 60 rpm
coefficient of friction (μ) = 0.1
acceleration due to gravity (g) = 9.8 m/s^{2}
maximum distance without falling off (r) = ?
to get how far from the center of the disk the coin can be placed without having to slip off we equate the formula for the centrifugal force with the frictional force on the turntable force
mv^2 / r = m x g x μ
v^2 / r = g x μ .......equation 1
where
velocity (v) = angular speed (rads/seconds) x radius
angular speed (rads/seconds) = (\frac{2π}{60} ) x rpm
angular speed (rads/seconds) = (\frac{2 x π}{60} ) x 60 = 6.28 rads/ seconds
now
velocity = 6.28 x r = 6.28 r
now substituting the value of velocity into equation 1
v^2 / r = g x μ
(6.28r)^2 / r = 9.8 x 0.1
39.5 x r = 0.98
r = 0.02 m
Answer:
λ = 5940 Angstroms
Explanation:
This is an exercise of the relativistic Doppler effect
f’= f √((1- v / c) / (1 + v / c))
Where the speed in between the strr and the observer is positive if they move away
Let's use the relationship
c = λ f
f = c /λ
We replace
c /λ’ = c /λ √ ((1- v / c) / (1 + v / c))
λ = λ’ √ ((1- v / c) / (1 + v / c))
Let's calculate
v = 0.01 c
v = 0.01 3 10⁸
v= 3 10⁶ m / s
λ = 6000 √ [(1- 3 10⁶/3 10⁸) / (1+ 3 10⁶/3 10⁸)]
λ = 6000 √ [0.99 / 1.01]
λ = 5940 Angstroms
<span>Her center of mass will rise 3.7 meters.
First, let's calculate how long it takes to reach the peak. Just divide by the local gravitational acceleration, so
8.5 m / 9.8 m/s^2 = 0.867346939 s
And the distance a object under constant acceleration travels is
d = 0.5 A T^2
Substituting known values, gives
d = 0.5 9.8 m/s^2 (0.867346939 s)^2
d = 4.9 m/s^2 * 0.752290712 s^2
d = 3.68622449 m
Rounded to 2 significant figures gives 3.7 meters.
Note, that 3.7 meters is how much higher her center of mass will rise after leaving the trampoline. It does not specify how far above the trampoline the lowest part of her body will reach. For instance, she could be in an upright position upon leaving the trampoline with her feet about 1 meter below her center of mass. And during the accent, she could tuck, roll, or otherwise change her orientation so she's horizontal at her peak altitude and the lowest part of her body being a decimeter or so below her center of mass. So it would look like she jumped almost a meter higher than 3.7 meters.</span>
B: Extension Lines! You could have just searched this up on google