20/45=0.4*100= 44.4 so the answer is..................................................
Answer: 44.4%
Answer:
45.6m
Explanation:
The equation for the position y of an object in free fall is:

With the given values in the question the equation has one unknown v₀:

Solving for t=1:
1) 
To find the hight of the tower you can use the concept of energy conservation:
The energy of the body 1 sec before it hits the ground:
2) 
If h is the height of the tower, the energy on top of the tower:
3) 
Combining equation 2 and 3 and solving for h:
4) 
Combining equation 1 and 4:

An ice cube would transfer heat to another object whose temperature
is lower than zero°C (32°F).
A block of "dry ice" is sitting there at a temperature of -78°C (-109°F).
An ice cube helps to melt dry ice nice and fast.
If you could find a block of solid nitrogen, its temperature would be
63K (-210°C, -346°F). An ice cube would transfer heat to that baby
so fast that it would instantly boil.
Answer:
Definition. Nuclear physics is the study of the protons and neutrons at the centre of an atom and the interactions that hold them together in a space just a few femtometres (10-15 metres) across. Example nuclear reactions include radioactive decay, fission, the break-up of a nucleus, and fusion, the merging of nuclei.
Explanation:
here is your answer hope you will enjoy and mark me as brainlist
thank you
Answer:
Yes, it is reasonable to neglect it.
Explanation:
Hello,
In this case, a single molecule of oxygen weights 32 g (diatomic oxygen) thus, the mass of kilograms is (consider Avogadro's number):

After that, we compute the potential energy 1.00 m above the reference point:

Then, we compute the average kinetic energy at the specified temperature:

Whereas
stands for the Avogadro's number for which we have:

In such a way, since the average kinetic energy energy is about 12000 times higher than the potential energy, it turns out reasonable to neglect the potential energy.
Regards.