Answer:
The magnitude of the induced voltage in the loop is 20 mV.
Explanation:
given;
length of loop, L = 0.43 m
width of loop,w = 0.43 m
velocity of moved loop, v = 0.15m/s
magnetic field strength,B = 0.31 T
To determine the magnitude of the induced voltage in the loop, we apply Faraday's law;
magnitude induced E.M.F = BLv
magnitude induced E.M.F = 0.31 x 0.43 x 0.15 = 0.02 V = 20 mV
Therefore, the magnitude of the induced voltage in the loop is 20 mV.
Answer:
confocal microscopy
Explanation:
According to my research on different types of microscopes, I can say that based on the information provided within the question the tool being mentioned in this situation is a confocal microscopy. This is an extremely powerful microscope used to develop extremely sharp images of cells and tissues by viewing one plane of the specimen at a given time.
I hope this answered your question. If you have any more questions feel free to ask away at Brainly.
Answer:
The factor of the diameter is 0.95.
Explanation:
Given that,
Power of old light bulb = 54.3 W
Power = 60 W
We know that,
The resistance is inversely proportional to the diameter.

The power is inversely proportional to the resistance.


We need to calculate the factor of the diameter of the filament reduced
Using relation of power and diameter

Put the value into the formula



Hence, The factor of the diameter is 0.95.
Answer:
e. all of these
Explanation:
The fatigue strength is improved by then high alloy steels , high yield steels , high hardened steel , high ultimate steel .
Due to the formation of the improved materials in alloy steels will increase the fatigue strength . Similarly for a high yield steels and hardened steels these cycles to failure will improve .