Answer: A Radium
Explanation:
Thorium-232 is an alpha-emitting radionuclide, which decays to radium-228, which is a beta emitter with a half-life of about six years.
Answer:
Yes, they do have the same internal energy.
Explanation:
The thermal balance refers to when there is no heat transfer between the bodies and their surroundings i.e. the bodies and the environment are at the same temperature.
Suppose two bodies of different masses and different materials, each one of them is at a temperature of 25(° C), which is the same temperature as the temperature of the environment, if these two bodies are close to each other, there is also heat transfer as they are at the same temperature, in the absence of any type of energy that enter or exit in these bodies, the amount of internal energy will be equal in both bodies.
Note: when the internal energy of one of these bodies is increased, heat transfer will happen, always looking for the thermal balance.
Average speed = (total distance) / (total time)
Total distance = (70km + 104km + 79km) = 253 km
Total time = (2hr + 1.5hr + 2hr) = 5.5 hrs
Average speed = (253 km) / (5.5 hrs)
<em>Average speed = 46 km/hr</em>
I couldn't know for certain cause I don't know what course it is. But according to OSHA, a Exposure Control Plan is used for limited contact with bloody or body fluids so...
A:
is my guess
Answer:
the energy of the photons is greater than the work function of the zinc oxide.
h f> = Ф
Explanation:
In this experiment on the photoelectric effect, it is explained by the Einstein relation that considers the light beam formed by discrete energy packages.
K_max = h f - Ф
in the exercise phase, they indicate that different wavelengths can inject electrons, so the energy of the photons is greater than the work function of the zinc oxide.
h f > = Ф