Hi!
<u>The correct options would be: </u>
is an electron
is emitted from nucleus
has a -1 charge
Explanation:
A beta particle is a result of a neutron (a neutral particle) changing into two particles of opposite charges - a high energy electron (with a negative charge -1) and a positron (with a positive charge +1). Neutrons are present in the nucleus of an atom, and thus the beta particles are said to be emitted from the nucleus. They do have a charge, not zero, but it is not +2 and can only be either -1 or +1. This form of radiation is not electromagnetic energy because beta particles are massless, and do not travel at the speed of light (both being characteristics of electromagnetic radiation). Beta particles are not pure forms of energy.
Hope this helps.
The answer is <span>B. element.
An element is composed of only one kind of atom and cannot be separated into simpler substances. Oxygen (O) is the element.
A compound is a substance composed </span><span>of two or more <em>different </em>atoms chemically bonded to one another, for example, water (H</span>₂<span>O) consists of 2 atoms of hydrogen (H) and 1 atom of oxygen (O), so it is the compound.
A mixture consists of two or more substances that are not chemically combined. Solutions and colloids are mixtures.</span>
Answer: Theoretical yield of
produced by 8.96 g of S is 33.6 g
Explanation:
To calculate the moles :


The balanced chemical equation is:
According to stoichiometry :
2 moles of
produce = 3 moles of 
Thus 0.28 moles of
will produce=
of
Mass of 
Thus theoretical yield of
produced by 8.96 g of S is 33.6 g
Yes, free electrons appear in balanced redox reaction equations. However, this is only true for half-reactions. This is because redox reactions primarily involve the transfer of electrons, which are better visualized if explicitly shown in the balanced reactions. In reduction reactions, electrons are placed on the left side of the equation. Oxidation reactions show electrons on the right side of the equation.
Explanation:
A half reaction is either the chemical reaction or reduction reaction part of an oxidoreduction reaction. A half reaction is obtained by considering the amendment in chemical reaction states of individual substances concerned within the oxidoreduction reaction. Half-reactions are usually used as a way of leveling oxidoreduction reactions.The half-reaction on the anode, wherever chemical reaction happens, is Zn(s) = Zn2+ (aq) + (2e-).
The metal loses 2 electrons to create Zn2+. The half-reaction on the cathode wherever reduction happens is Cu2+ (aq) + 2e- = Cu(s).
Here, the copper ions gain electrons and become solid copper.