Answer:
1.25 x 10^15Hz
Explanation:
c = frequency x wavelength
c is the speed of light, which is equal to 3.00 x 10^8 m / s
frequency = c /wavelength
= (3.00 x 10^8m /s) / (2.40 x 10^-5 cm x 1 m /100cm)
= (3.00 x 10^8 m/s) / 2.40 x 10^-7m
= 1.25 x 10^15/s 1 / s = 1Hz
So, the Frequency = 1.25 x 10^15Hz
I hope this helped :)
Answer:
a) = 0.704%
b) = 1.30%
c) = 2.60%
Explanation:
Given that:
= 
For Part A; where Concentration of A = 0.270 M
Percentage Ionization(∝) 



percentage% (∝) = 
= 0.704%
For Part B; where Concentration of B =
M



percentage% (∝) = 0.0130 × 100%
= 1.30%
For Part C; where Concentration of C= 



percentage% (∝) = 0.02608 × 100%
= 2.60%
Absorbance is related to the concentration of a substance using the Beer-Lambert's Law. According to this law, absorbance is linearly related to concentration. However, this is only true up to a certain concentration depending on the substance. For this case, we assume that the said law is applicable.
A = kC
Using the first conditions, ewe solve for k.
0.26 = k (0.10)
k = 2.6
A = kC
A = 2.6 (0.20) = 0.52
Therefore, the absorbance at a concentration of 0.20 M and wavelength of 500nm is 0.52.
<span>Tf is the freezing point of the solution(the solvent plus solute).
T*f is the freezing point of the pure solvent(without solute)
i is the van't Hoff factor.It is approximately the number of particles in solution that are made for each particle of the solute that is placed into solution.Therefore, for nonelectrolytes, i = 1.
Kf is the freezing point depression constant.For water, Kf = 1.86 Degree C/m, or 1.86 Degree C.kg/mol.
Tf is -1.58 Degree C</span>