Answer:
11.58 L of N₂
Explanation:
We'll begin by calculating the number of mole in 37.2 g of magnesium. This can be obtained as follow:
Mass of Mg = 37.2 g
Molar mass of Mg = 24 g/mol
Mole of Mg =?
Mole = mass /Molar mass
Mole of Mg = 37.2 / 24
Mole of Mg = 1.55 moles
Next, we shall write the balanced equation for the reaction. This is illustrated below:
3Mg + N₂ —> Mg₃N₂
From the balanced equation above,
3 moles of Mg reacted with 1 mole of N₂.
Therefore, 1.55 moles of Mg will react with = (1.55 × 1)/3 = 0.517 mole of N₂
Thus, 0.517 mole of N₂ is need for the reaction.
Finally, we shall determine the volume of N₂ needed for the reaction as follow:
Recall:
1 mole of a gas occupies 22.4 L at STP.
1 mole of N₂ occupied 22.4 L at STP.
Therefore, 0.517 mole of N₂ will occupy = 0.517 × 22.4 = 11.58 L at STP
Thus, 11.58 L of N₂ is needed for the reaction.
Answer:
Ar
Explanation:
does not react with anything it has a full electron shell so it does not combine and it is a noble gas
Answer:
Low value for copper recovery
Explanation:
The percentage recovery is obtained from;
Percent recovery = amount of substance you actually collected / amount of substance you were supposed to collect × 100
Note that the fact that some of the copper nitrate solution splashed out of the beaker means that some amount copper has been lost from the system. This loss of copper leads to a lower value of copper recovered from solution.
Answer:

Explanation:
From the question we are told that:
Density of acetic acid 
Density of Water 
Generally the equation for Solution Density is mathematically given by




Answer:
Give them each one so all of you is 8
Explanation:
I hope it helps:)