Explanation:
(c) I assume we're looking for mA.
Sum of forces on B in the -y direction:
∑F = ma
mBg − T = mBa
Sum of forces on A in the +x direction:
∑F = ma
T = mAa
Substitute:
mBg − mAa = mBa
mBg − mBa = mAa
mA = mB (g − a) / a
Plug in values:
mA = (5 kg) (10 m/s² − 0.01 (10 m/s²)) / (0.01 (10 m/s²))
mA = 495 kg
The answer key seems to have a mistake. It's possible they meant mB = 1 kg, or they changed mB to 5 kg but forgot to change the answer.
We can't tell what RATING is printed on the package of bulbs, but right now, the bulb is dissipating IxE= 30 watts of heat and light.
E is the vapourising state
When solving question that contains equations and the use mathematical computations, It is always ideal to list the parameters given.
Now, given that:
- the speed of the car which is the initial velocity (u) = 100 km/h before it hits the wall.
- after hitting the wall, the final velocity will be (v) = 0 km/h
Assumptions:
- Suppose we make an assumption that the distance travelled during the collision of the car with the brick wall (S) = 1 m
- That the car's acceleration is also constant.
∴
For a motion under constant acceleration, we can apply the kinematic equation:
where;
v = final velocity
u = initial velocity
a = acceleration
s = distance
From the above equation, making acceleration (a) the subject of the formula:
The initial velocity (u) is given in km/h, and we need to convert it to m/s as it has an effect on the unit of the acceleration.
since 1 km/h = 0.2778 m/s
100 km/h = 27.78 m/s
a = - 385.86 m/s²
Similarly, from the kinematic equation of motion, the formula showing the relation between time, acceleration and velocity is;
v = u + at
where;
v = 0
-u = at
t = 0.07 seconds
An airbag is designed in such a way as to prevent the driver from hitting on the steering wheel or other hard substance that could damage the part of the body. The use of the seat belt is to keep the driver in shape and in a balanced position against the expansion that occurred by the airbag during the collision on the brick wall.
Thus, we can conclude that the airbag must be inflated at 0.07 seconds faster before the collision to effectively protect the driver.
Learn more about the kinematic equation here:
brainly.com/question/11298125?referrer=searchResults
Explanation:
We have,
The initial position of an object is zero.
The starting velocity is 3 m/s and the final velocity was 10 m/s.
The object moves with constant acceleration..
The area covered under the velocity-time graph gives displacement of the object. The correct option is "the area of the rectangle plus the area of the triangle under the line".