Answer:
<u>The</u><u> </u><u>best</u><u> </u><u>thermal</u><u> </u><u>insulators</u><u> </u><u>have</u><u> </u><u>free</u><u> </u><u>electrons</u>
Answer:
Explanation:
The formula for this, the easy one, is
where No is the initial amount of the element, t is the time in years, and H is the half life. Filling in:
and simplifying a bit:
and
N = 48.0(.0625) so
N = 3 mg left after 12.3 years
In almost every case in nature, adding heat to a liquid
causes the density of the liquid to decrease. That is,
when the liquid gets warmer, it expands and occupies
more space.
The one big exception to this rule is water !
Starting with a block of ice at zero°C (32°F), as the ice melts,
becomes water at zero°C, and all the way to 4°C (about 39°F),
its density increases all the way. That is, it shrinks and occupies
less volume as it goes from ice at zero°C to water at 4°C.
This sounds like an interesting but insignificant quirk ... until
you realize that if water didn't do this, then life on Earth would
be impossible !
<span>If your options are:
A.Both momentum and kinetic energy are vector quantities.
B.Momentum is a vector quantity and kinetic energy is a scalar quantity.
C.Kinetic energy is a vector quantity and momentum is a scalar quantity.
D.Both momentum and kinetic energy are scalar quantities.
</span>
The answer on the question given is letter B.<span>Momentum is a vector quantity and kinetic energy is a scalar quantity.</span>
Answer:
5,000J
Explanation:
Work = Force x Distance
Distance back and forth is canceled out, so either the answer is + or -
5.0m + 5.0m = 10.0m
500N x 10.0m = 5,000J