Answer : The normal boiling point of ethanol will be,
or 
Explanation :
The Clausius- Clapeyron equation is :

where,
= vapor pressure of ethanol at
= 98.5 mmHg
= vapor pressure of ethanol at normal boiling point = 1 atm = 760 mmHg
= temperature of ethanol = 
= normal boiling point of ethanol = ?
= heat of vaporization = 39.3 kJ/mole = 39300 J/mole
R = universal constant = 8.314 J/K.mole
Now put all the given values in the above formula, we get:


Hence, the normal boiling point of ethanol will be,
or 
Matter is a slightly archaic word for something with mass, as in the conservation of matter (which must be paired with the conservation of energy to still hold true. Mass can be converted back and forth between energy, so therefore so can matter. Of course relativistic mass is conserved as it's a function of the energy of an object in that reference frame.
Answer : The entropy change for the surroundings of the reaction is, -198.3 J/K
Explanation :
We have to calculate the entropy change of reaction
.

![\Delta S^o=[n_{NH_3}\times \Delta S^0_{(NH_3)}]-[n_{N_2}\times \Delta S^0_{(N_2)}+n_{H_2}\times \Delta S^0_{(H_2)}]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo%3D%5Bn_%7BNH_3%7D%5Ctimes%20%5CDelta%20S%5E0_%7B%28NH_3%29%7D%5D-%5Bn_%7BN_2%7D%5Ctimes%20%5CDelta%20S%5E0_%7B%28N_2%29%7D%2Bn_%7BH_2%7D%5Ctimes%20%5CDelta%20S%5E0_%7B%28H_2%29%7D%5D)
where,
= entropy of reaction = ?
n = number of moles
= standard entropy of 
= standard entropy of 
= standard entropy of 
Now put all the given values in this expression, we get:
![\Delta S^o=[2mole\times (192.5J/K.mole)]-[1mole\times (191.5J/K.mole)+3mole\times (130.6J/K.mole)]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo%3D%5B2mole%5Ctimes%20%28192.5J%2FK.mole%29%5D-%5B1mole%5Ctimes%20%28191.5J%2FK.mole%29%2B3mole%5Ctimes%20%28130.6J%2FK.mole%29%5D)

Therefore, the entropy change for the surroundings of the reaction is, -198.3 J/K
Answer:
It helps them to swim
I think this ans may help you
a resource that cannot be replenished in a short period of time