Answer:
Yes, the investigations will reach similar conclusions about the reactivity of H2 and Cl2
Explanation:
1. The law of multiple proportions says that when elements form compounds, the proportions of the elements in those chemical compounds can be expressed in small whole number ratios. This means that regardless of whether 1000 times more of the products are used, the reactivity of the products is established by the chemical reaction
2. The law of multiple proportions is an extension of the law of definite composition, which states that compounds will consist of defined ratios of elements.
3. A reaction with more reactants will need more care because more products are produced, which can be toxic
4. H2 and Cl2 reactivity does not depend on the quantities but the chemical properties of each compound
Answer:
Explanation:
Example #1: How many moles of oxygen will occupy a volume of 2.50 L at STP? Standard ... What is the volume of gas at 2.00 atm and 200.0 K if its original volume was ... P2 = 2.00 atm 2.000tm) 273k. T=273k. 200.0k. Tz= 200.0k. V, = 200.0L ... A gas has a pressure of 0.370 atm at 50.0°C. What is the pressure at standard.
Answer:
K^+ and NO3^-
Explanation:
In a balanced ionic equation, we usually see the species that react to yield the main product in the reaction.
Consider the reaction;
Pb(NO3)2(aq) +2 KI(aq) -------> PbI2(s) + 2KNO3(aq)
The main product in this reaction is PbI2. Hence the balanced ionic equation is;
Pb^2+(aq) + 2I^-(aq) ------> PbI2(s)
Notice that K^+ and NO3^- did not participate in this reaction. All ions that are part of the molecular equation but do not participate in the ionic reaction equation are called spectator ions. Hence K^+ and NO3^- are spectator ions in this reaction as can be seen clearly above.
Explanation:
83,000 is 8.3x10^4 in standard form
when it's a positive move decimal to the right as many as exponent say
if it's negative move decimal to left and and zeros till you move what exponent says
Each mole of Ca(OH)₂ will produce 2 moles of OH- ions
Each mole of OH- ions will require one mole of H+ ions
Thus,
moles of OH- ions = moles of H+ ions = 2 x 0.3
moles of H+ ions required = 0.6
Each mole of HCl will produce one mole of H+ ions
Moles of HCl = moles of H+ ions
Moles of HCl = 0.6