Answer:
<em>The solution of the equation </em>
<em>( 0.4 ,-3)</em>
Step-by-step explanation:
<u><em>Explanation</em></u>:-
<u><em>Step(i):</em></u>-
Given system of equations
10 x+3 y = −5 ...(i)
- 5 x - 4 y = 10 ...(ii)
Multiply (i) with '5'
10 × 5 x + 3×5 y = - 25
50 x + 15 y = 25 ...(iii)
Multiply (ii) with '10'
-5 × 10 x - 4×1 0 y = 100
- 50 x - 40 y =100 ...(iv)
<u><em>Step(ii)</em></u>:-
Solving (iii) and (iv)
50 x + 15 y =- 25
<u> - 50 x - 40 y =100</u>
- 25 y = 75
Dividing ' - 25' on both sides, we get
<em> y = -3</em>
<em>substitute y = -3 in equation (i) , we get</em>
<em> </em> 10 x+3 y = −5
10 x - 9 = - 5
10 x = -5 + 9

<em> x = 0.4 </em>
<u><em>Final answer</em></u>:-
<em>The solution of the equation ( 0.4 ,-3)</em>
Answer:
option 2
Step-by-step explanation:
4^2=16/8=2. 4^2=16/16=1. 2-1=1
Answer:
41?
Step-by-step explanation:
Answer:
Vertex form
(
2
/3
, −
10
/3
)
x and y intercepts
Y intercept (
2
+
√
10
/3
,
0
)
,
(
2
−
√
10/
3
,
0
)
X intercept (
0
,
−
2
)
Step-by-step explanation:
Answer:
f(n) = 14.3908 * 1.2561^(n-1)
Step-by-step explanation:
A geometric sequence can be defined by:
f(n) = a*r^(n-1), where 'a' is the inicial population, and 'r' is the ratio the population increases each year
If we have 45 raccoons after 6 years and 71 raccoons after 8 years, we can use these values in the equation to find the values of 'a' and 'r':
for n=6, f(n) = 45:
45 = a*r^5
for n=8, f(n) = 71:
71 = a*r^7
dividing the second equation by the first, we have:
r^2 = 71/45 = 1.5778
r = 1.2561
Now, applying this value of 'r' in the first equation, we find 'a':
45 = a*1.2561^5
a = 45/3.1270 = 14.3908
So, the function that models the local raccoon population 'f(n)' in the terms of the number of years 'n' is:
f(n) = 14.3908 * 1.2561^(n-1)