Answer:
<h2>hope it helps you see the attachment for further information .....✌✌✌✌✌</h2>
Answer:
a) 24 kg
b) 32 kg
Explanation:
The gauge pressure is of the gas is equal to the weight of the piston divided by its area:
p = P / A
p = m * g / (π/4 * d^2)
Rearranging
p * (π/4 * d^2) = m * g
m = p * (π/4 * d^2) / g
m = 1200 * (π/4 * 0.5^2) / 9.81 = 24 kg
After the weight is added the gauge pressure is 2.8kPa
The mass of piston plus addded weight is
m2 = 2800 * (π/4 * 0.5^2) / 9.81 = 56 kg
56 - 24 = 32 kg
The mass of the added weight is 32 kg.
Answer:
Technician A is wrong
Technician B is right
Explanation:
voltage drop of 0.8 volts on the starter ground circuit is not within specifications. Voltage drop should be within the range of 0.2 V to 0.6 V but not more than that.
A spun bearing can seize itself around the crankshaft journal causing it not to move. As the car ignition system is turned on, the stater may draw high current in order to counter this seizure.
Answer:
yes, the recordings sound is same
Explanation:
given data
recording done = 2 performances
1st show = sold out
2nd show = lightly attended
to find out
recordings sound the same and why
solution
as per given in
- 1st show is sold out it mean in this case concert hall is full so that recording sound should be high here
- 2nd case only few people are attended and struggle for ticket and orchestra
it mean it sound performance so in both case recording sound will be same
because we do not other all are sitting at front row or they sit as they want
Answer:
true
Explanation:
Creep is known as the time dependent deformation of structure due to constant load acting on the body.
Creep is generally seen at high temperature.
Due to creep the length of the structure increases which is not fit for serviceability purpose.
When time passes structure gain strength as the structure strength increases with time so creep tends to decrease.
When we talk about Creep rate for new structure the creep will be more than the old structure i.e. the creep rate decreases with time.