The heat transferred to and the work produced by the steam during this process is 13781.618 kJ/kg
<h3>
How to calcultae the heat?</h3>
The Net Change in Enthalpy will be:
= m ( h2 - h1 ) = 11.216 ( 1755.405 - 566.78 ) = 13331.618 kJ/kg
Work Done (Area Under PV curve) = 1/2 x (P1 + P2) x ( V1 - V2)
= 1/2 x ( 75 + 225) x (5 - 2)
W = 450 KJ
From the First Law of Thermodynamics, Q = U + W
So, Heat Transfer = Change in Internal Energy + Work Done
= 13331.618 + 450
Q = 13781.618 kJ/kg
Learn more about heat on:
brainly.com/question/13439286
#SP1
Answer:
Yes
Explanation:
Yes it is true that COP of heat pump always greater than 1.But the COP of refrigeration can be greater or less than 1.
We know that
COP of heat pump= 1 + COP of refrigeration
It is clear that COP can not be negative .So from the above expression we can say that COP of heat pump is always greater than one.
Answer:
fluid nozzle that is too large
Answer:
a)
, b) Yes.
Explanation:
a) The maximum thermal efficiency is given by the Carnot's Cycle, whose formula is:


b) The claim of the inventor is possible since real efficiency is lower than maximum thermal efficiency.
Answer:
Thermal resistance for a wall depends on the material, the thickness of the wall and the cross-section area.
Explanation:
Current flow and heat flow are very similar when we are talking about 1-dimensional energy transfer. Attached you can see a picture we can use to describe the heat flow between the ends of the wall. First of all, a temperature difference is required to flow heat from one side to the other, just like voltage is required for current flow. You can also see that
represents the thermal resistance. The next image explains more about the parameters which define the value of the thermal resistances which are the following:
- Wall Thickness. More thickness, more thermal resistance.
- Material thermal conductivity (unique value for each material). More conductivity, less thermal resistance.
- Cross-section Area. More cross-section area, less thermal resistance.
A expression to define the thermal resistance for the wall is as follows:
, where l is the distance between the tow sides of the wall, that is to say the wall thickness; A is the cross-section area and k is the material conducitivity.