I believe the answer is C. Does not touch it
Someone please correct me if I am wrong.
Answer: A function can be defined as a relation in which one thing is dependent on another for its value.
Explanation: Given R = 8.314J/mol*k
PV = nRT
V = nRT/ P
V = 8.314RT / P (cm^3)
Volume of gas =(( 8.314 * R* T) / P ) cm3
Answer:
494.1 kPa
Explanation:
Using the combined gas law equation;
P1V1/T1 = P2V2/T2
Where;
P1 = initial pressure (kPa)
P2 = final pressure (kPa)
V1 = initial volume (L)
V2 = final volume (L)
T1 = initial temperature (K)
T2 = final temperature (K)
According to the information provided in this question,
P1 = 294 kPa
P2 = ?
V1 = 42.9 liters
V2 = 22.8 liters
T1 = 76.0°C = 76 + 273 = 349K
T2 = 38.7°C = 38.7 + 273 = 311.7K
294 × 42.9/349 = P2 × 22.8/311.7
12612.6/349 = 22.8 P2/311.7
36.14 = 22.8P2/311.7
Cross multiply
36.14 × 311.7 = 22.8P2
11264.605 = 22.8P2
P2 = 11264.605 ÷ 22.8
P2 = 494.1 kPa
Answer:
52 da
Step-by-step explanation:
Whenever a question asks you, "How long to reach a certain concentration?" or something similar, you must use the appropriate integrated rate law expression.
The i<em>ntegrated rate law for a first-order reaction </em>is
ln([A₀]/[A] ) = kt
Data:
[A]₀ = 750 mg
[A] = 68 mg
t_ ½ = 15 da
Step 1. Calculate the value of the rate constant.
t_½ = ln2/k Multiply each side by k
kt_½ = ln2 Divide each side by t_½
k = ln2/t_½
= ln2/15
= 0.0462 da⁻¹
Step 2. Calculate the time
ln(750/68) = 0.0462t
ln11.0 = 0.0462t
2.40 = 0.0462t Divide each side by 0.0462
t = 52 da
A nucleotide is composed of a phosphate group, sugar, and nitrogen base. DNA is made of 2 strands of nucleotides linked together by covalent bonds between the phosphate and sugar of each nucleotide. The strands of nucleotides are linked together by hydrogen bonds creating DNA. Hope this helps and sorry if I made a mistake.