First convert to moles:
0.5113 g / 17 g/mol = 0.0301 mol
Now create a ratio based on the reaction provided to solve for the unknown:
4 NH3 / -905.4 kJ = 0.0301 mol NH3 / x kJ
x = -6.808 kJ
Answer:
2.05*10⁻⁵ moles of CF₂ can dissolve in 100 g of water.
12.82 moles of CaF₂ will dissolve in exactly 1.00 L of solution
Explanation:
First, by definition of solubility, in 100 g of water there are 0.0016 g of CaF₂. So, to know how many moles are 0.0016 g, you must know the molar mass of the compound. For that you know:
- Ca: 40 g/mole
- F: 19 g/mole
So the molar mass of CaF₂ is:
CaF₂= 40 g/mole + 2*19 g/mole= 78 g/mole
Now you can apply the following rule of three: if there are 78 grams of CaF₂ in 1 mole, in 0.0016 grams of the compound how many moles are there?

moles=2.05*10⁻⁵
<u><em>2.05*10⁻⁵ moles of CF₂ can dissolve in 100 g of water.</em></u>
Now, to answer the following question, you can apply the following rule of three: if by definition of density in 1 mL there is 1 g of CaF₂, in 1000 mL (where 1L = 1000mL) how much mass of the compound is there?

mass of CaF₂= 1000 g
Now you can apply the following rule of three: if there are 78 grams of CaF₂ in 1 mole, in 1000 grams of the compound how many moles are there?

moles=12.82
<u><em>12.82 moles of CaF₂ will dissolve in exactly 1.00 L of solution</em></u>
Answer:
m = 998 g
Explanation:
Hello there!
In this case, according to the definition of the molar mass as the mass of one mole of the compound, it is possible to state the 1 mole of C8H18 has a mass of 114.26 grams; therefore, the mass in 8.65 moles turn out to be:

In agreement to the notation requirement.
Best regards!
Answer:
The ability of water molecules to form hydrogen bonds with other molecules besides water is the universality of water as a solvent.
Explanation:
hope it helps you :)